Simultaneous isolation of high-quality dna, rna, mirna and proteins from tissues for genomic applications

feature-image

Play all audios:

Loading...

ABSTRACT Genomic technologies have revolutionized our understanding of complex Mendelian diseases and cancer. Solid tumors present several challenges for genomic analyses, such as tumor


heterogeneity and tumor contamination with surrounding stroma and infiltrating lymphocytes. We developed a protocol to (i) select tissues of high cellular purity on the basis of histological


analyses of immediately flanking sections and (ii) simultaneously extract genomic DNA (gDNA), mRNA, noncoding RNA (ncRNA; enriched in miRNA) and protein from the same tissues. After tissue


selection, about 12–16 extractions of DNA, RNA or protein can be obtained per day. Compared with other similar approaches, this fast and reliable methodology allowed us to identify mutations


in tumors with remarkable sensitivity and to perform integrative analyses of whole-genome and exome data sets, DNA copy numbers (by single-nucleotide polymorphism (SNP) arrays), gene


expression data (by transcriptome profiling and quantitative PCR (qPCR)) and protein levels (by western blotting and immunohistochemical analysis) from the same samples. Although we focused


on renal cell carcinoma, this protocol may be adapted with minor changes to any human or animal tissue to obtain high-quality and high-yield nucleic acids and proteins. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS SCALABLE CO-SEQUENCING OF RNA AND DNA FROM INDIVIDUAL NUCLEI Article 12 February 2025 RELIABLE DETECTION OF SOMATIC MUTATIONS IN SOLID TISSUES BY LASER-CAPTURE


MICRODISSECTION AND LOW-INPUT DNA SEQUENCING Article 14 December 2020 COMPREHENSIVE RNA DATASET OF TISSUE AND PLASMA FROM PATIENTS WITH ESOPHAGEAL CANCER OR PRECURSOR LESIONS Article Open


access 14 March 2022 ACCESSION CODES ACCESSIONS GENE EXPRESSION OMNIBUS * GSE25540 * GSE36895 REFERENCES * Bamshad, M.J. et al. Exome sequencing as a tool for Mendelian disease gene


discovery. _Nat. Rev. Genet._ 12, 745–755 (2011). Article  CAS  PubMed  Google Scholar  * Mwenifumbo, J.C. & Marra, M.A. Cancer genome-sequencing study design. _Nat. Rev. Genet._ 14,


321–332 (2013). Article  CAS  PubMed  Google Scholar  * Wheeler, D.A. & Wang, L. From human genome to cancer genome: The first decade. _Genome Res._ 23, 1054–1062 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. _Nature_ 456, 66–72 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. _N. Engl. J. Med._ 366, 883–892 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Espina, V. et al. Laser-capture microdissection. _Nat. Protoc._ 1, 586–603 (2006). Article  CAS  PubMed  Google Scholar  * Baslan, T. et al. Genome-wide


copy number analysis of single cells. _Nat. Protoc._ 7, 1024–1041 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Navin, N. et al. Tumour evolution inferred by single-cell


sequencing. _Nature_ 472, 90–94 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic


pancreatic cancer. _Nature_ 467, 1109–1113 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hahn, S.A. et al. Allelotype of pancreatic adenocarcinoma using xenograft


enrichment. _Cancer Res._ 55, 4670–4675 (1995). CAS  PubMed  Google Scholar  * Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. _Nat. Genet._ 44, 751–759 (2012).


Article  PubMed  PubMed Central  Google Scholar  * Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. _Sci. Transl. Med._ 4,


137ra75 (2012). Article  PubMed  PubMed Central  Google Scholar  * Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. _Nat. Genet._ 45, 860–867 (2013). Article


  CAS  PubMed  Google Scholar  * Hakimi, A.A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators _BAP1_ and _SETD2_: a report by MSKCC


and the KIRC TCGA research network. _Clin. Cancer Res._ 19, 3259–3267 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Creighton, C.J. et al. Comprehensive molecular


characterization of clear cell renal cell carcinoma. _Nature_ 499, 43–49 (2013). Article  CAS  Google Scholar  * Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals


inactivation of histone modifying genes. _Nature_ 463, 360–363 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Varela, I. et al. Exome sequencing identifies frequent mutation


of the SWI/SNF complex gene _PBRM1_ in renal carcinoma. _Nature_ 469, 539–542 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hakimi, A.A. et al. Clinical and pathologic


impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. _Eur. Urol._ 63, 848–854 (2013). Article  PubMed  Google Scholar  * Guo, G. et al. Frequent


mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. _Nat. Genet._ 44, 17–19 (2012). Article  CAS  Google Scholar  * Nickerson,


M.L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. _Clin. Cancer Res._ 14, 4726–4734 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Peña-Llopis, S., Christie, A., Xie, X.J. & Brugarolas, J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. _Cancer Res._ 73, 4173–4179 (2013). Article


  PubMed  PubMed Central  Google Scholar  * Boom, R. et al. Rapid and simple method for purification of nucleic acids. _J. Clin. Microbiol._ 28, 495–503 (1990). CAS  PubMed  PubMed Central 


Google Scholar  * Gross-Bellard, M., Oudet, P. & Chambon, P. Isolation of high-molecular-weight DNA from mammalian cells. _Eur. J. Biochem._ 36, 32–38 (1973). Article  CAS  PubMed 


Google Scholar  * Strauss, W.M. Preparation of genomic DNA from mammalian tissue. _Curr. Protoc. Mol. Biol._ 42, 2.2.1–2.2.3 (2001). Google Scholar  * Chomczynski, P. & Sacchi, N.


Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. _Anal. Biochem._ 162, 156–159 (1987). Article  CAS  PubMed  Google Scholar  * Chomczynski,


P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. _Nat. Protoc._ 1, 581–585 (2006). Article


  CAS  PubMed  Google Scholar  * Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. _Biotechniques_ 15, 532–534,


536-537 (1993). CAS  PubMed  Google Scholar  * Eddy, S.R. Non-coding RNA genes and the modern RNA world. _Nat. Rev. Genet._ 2, 919–929 (2001). Article  CAS  PubMed  Google Scholar  * Siomi,


M.C., Sato, K., Pezic, D. & Aravin, A.A. PIWI-interacting small RNAs: the vanguard of genome defence. _Nat. Rev. Mol. Cell Biol._ 12, 246–258 (2011). Article  CAS  PubMed  Google Scholar


  * Vega-Rubin-de-Celis, S. et al. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. _Biochemistry_ 49, 2491–2501 (2010). Article  CAS  PubMed  Google


Scholar  * Kucejova, B. et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. _Mol. Cancer Res._ 9, 1255–1265 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Peña-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. _EMBO J._ 30, 3242–3258 (2011). Article  PubMed  PubMed Central  Google Scholar  * Clark, S.J., Statham,


A., Stirzaker, C., Molloy, P.L. & Frommer, M. DNA methylation: bisulphite modification and analysis. _Nat. Protoc._ 1, 2353–2364 (2006). Article  CAS  PubMed  Google Scholar  * Taiwo, O.


et al. Methylome analysis using MeDIP-seq with low DNA concentrations. _Nat. Protoc._ 7, 617–636 (2012). Article  CAS  PubMed  Google Scholar  * Southern, E. Southern blotting. _Nat.


Protoc._ 1, 518–525 (2006). Article  CAS  PubMed  Google Scholar  * Wilhelm, B.T., Marguerat, S., Goodhead, I. & Bahler, J. Defining transcribed regions using RNA-seq. _Nat. Protoc._ 5,


255–266 (2010). Article  CAS  PubMed  Google Scholar  * Streit, S., Michalski, C.W., Erkan, M., Kleeff, J. & Friess, H. Northern blot analysis for detection and quantification of RNA in


pancreatic cancer cells and tissues. _Nat. Protoc._ 4, 37–43 (2009). Article  CAS  PubMed  Google Scholar  * Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced


detection of small RNA. _Nat. Protoc._ 3, 1077–1084 (2008). Article  CAS  PubMed  Google Scholar  * Liu, C.G., Calin, G.A., Volinia, S. & Croce, C.M. MicroRNA expression profiling using


microarrays. _Nat. Protoc._ 3, 563–578 (2008). Article  CAS  PubMed  Google Scholar  * Carrette, O., Burkhard, P.R., Sanchez, J.C. & Hochstrasser, D.F. State-of-the-art two-dimensional


gel electrophoresis: a key tool of proteomics research. _Nat. Protoc._ 1, 812–823 (2006). Article  CAS  PubMed  Google Scholar  * Shiio, Y. & Aebersold, R. Quantitative proteome analysis


using isotope-coded affinity tags and mass spectrometry. _Nat. Protoc._ 1, 139–145 (2006). Article  CAS  PubMed  Google Scholar  * de Planell-Saguer, M., Rodicio, M.C. & Mourelatos, Z.


Rapid _in situ_ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. _Nat. Protoc._ 5, 1061–1073 (2010).


Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank S. Vega-Rubín-de-Celis and A. Pavía-Jiménez for critically reviewing the manuscript. This work was


supported by a Postdoctoral Fellowship of Excellence from Generalitat Valenciana (Spain) (no. BPOSTDOC06/004) to S.P.-L. and the following grants to J.B.: a grant from the Cancer Prevention


and Research Institute of Texas (no. RP101075) and an American Cancer Society Research Scholar grant (no. 55927). J.B. is a Virginia Murchison Linthicum Endowed Scholar in Medical Research.


The tissue management shared resource was supported in part by the US National Cancer Institute (no. 1P30CA142543). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Internal


Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA Samuel Peña-Llopis & James Brugarolas * Department of Developmental Biology, UT Southwestern Medical


Center, Dallas, Texas, USA Samuel Peña-Llopis & James Brugarolas * Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA Samuel Peña-Llopis & James


Brugarolas Authors * Samuel Peña-Llopis View author publications You can also search for this author inPubMed Google Scholar * James Brugarolas View author publications You can also search


for this author inPubMed Google Scholar CONTRIBUTIONS S.P.-L. developed the protocols and performed all the experiments. S.P.-L. and J.B. designed the experiments and wrote the manuscript.


CORRESPONDING AUTHORS Correspondence to Samuel Peña-Llopis or James Brugarolas. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Peña-Llopis, S., Brugarolas, J. Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for


genomic applications. _Nat Protoc_ 8, 2240–2255 (2013). https://doi.org/10.1038/nprot.2013.141 Download citation * Published: 17 October 2013 * Issue Date: November 2013 * DOI:


https://doi.org/10.1038/nprot.2013.141 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative