Genetic architecture and evolution of the s locus supergene in primula vulgaris

feature-image

Play all audios:

Loading...

ABSTRACT Darwin's studies on heterostyly in _Primula_ described two floral morphs, pin and thrum, with reciprocal anther and stigma heights that promote insect-mediated


cross-pollination. This key innovation evolved independently in several angiosperm families. Subsequent studies on heterostyly in _Primula_ contributed to the foundation of modern genetic


theory and the neo-Darwinian synthesis. The established genetic model for _Primula_ heterostyly involves a diallelic _S_ locus comprising several genes, with rare recombination events that


result in self-fertile homostyle flowers with anthers and stigma at the same height. Here we reveal the _S_ locus supergene as a tightly linked cluster of thrum-specific genes that are


absent in pins. We show that thrums are hemizygous not heterozygous for the _S_ locus, which suggests that homostyles do not arise by recombination between _S_ locus haplotypes as previously


proposed. Duplication of a floral homeotic gene 51.7 million years (Myr) ago, followed by its neofunctionalization, created the current _S_ locus assemblage which led to floral heteromorphy


in _Primula._ Our findings provide new insights into the structure, function and evolution of this archetypal supergene. Access through your institution Buy or subscribe This is a preview


of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 digital issues and online access to articles $119.00


per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CONVERGENT


EVOLUTIONARY PATTERNS OF HETEROSTYLY ACROSS ANGIOSPERMS SUPPORT THE POLLINATION-PRECISION HYPOTHESIS Article Open access 09 February 2024 COMPARATIVE TRANSCRIPTOMICS REVEALS COMMONALITIES


AND DIFFERENCES IN THE GENETIC UNDERPINNINGS OF A FLORAL DIMORPHISM Article Open access 01 December 2022 GENOME OF THE EARLY SPIDER-ORCHID _OPHRYS SPHEGODES_ PROVIDES INSIGHTS INTO SEXUAL


DECEPTION AND POLLINATOR ADAPTATION Article Open access 26 July 2024 REFERENCES * Barrett, S. C. H. The evolution of plant sexual diversity. _Nat. Rev. Genet._ 3, 274–284 (2002). Article 


CAS  Google Scholar  * Richards, A. J. _Primula_ 2nd edn (Batsford, 2002). Google Scholar  * Darwin, C. R. On the two forms or dimorphic condition in the species of _Primula_, and on their


remarkable sexual relations. _J. Proc. Linn. Soc. Bot._ 6, 77–96 (1862). Google Scholar  * Gregory, R. P., De Winton, D. & Bateson, M. A. Genetics of _Primula sinensis_. _J. Genet._ 13,


219–253 (1923). Article  Google Scholar  * Bateson, W. & Gregory, R. P. On the inheritance of heterostylism in _Primula_. _Proc. R. Soc. Lond. B_ 76, 581–586 (1905). Article  Google


Scholar  * Bridges, C. B. The chromosome hypothesis of linkage applied to cases in sweetpeas and _Primula_. _Am. Nat._ 48, 524–534 (1914). Article  Google Scholar  * Ernst, A. Weitere


untersuchungen zur phänanalyse zum fertilitätsproblem und zur genetik heterostyler primeln. II. Primula hortensis. _Arch. Julius Klaus Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg._


11, 1–280 (1936). Google Scholar  * Ernst, A. Heterostylie-Forschung versuche zur genetischen analyse eines organisations und ‘Anpassungs’ merkmales. _Z. Induk. Abstamm. Vererbungsl._ 71,


156–230 (1936). Google Scholar  * De Winton, D. & Haldane, J. B. S. The genetics of _Primula sinensis_. III. Linkage in the diploid. _J. Genet._ 31, 67–100 (1935). Article  Google


Scholar  * Darlington, C. D. Meiosis in diploid and tetraploid _Primula sinensis_. _J. Genet._ 24, 65–95 (1931). Article  Google Scholar  * Mather, K. The genetical architecture of


heterostyly in _Primula sinensis_. _Evolution_ 4, 340–352 (1950). Article  Google Scholar  * Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. _Curr. Biol._


24, R288–R294 (2014). Article  CAS  Google Scholar  * Darwin, C. R. _The Different Forms of Flowers on Plants of the Same Species_ (John Murray, 1877). Book  Google Scholar  * Dodd, M. E.,


Silvertown, J. & Chase, M. W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. _Evolution_ 53, 732–744 (1999). Article  Google Scholar


  * Webster, M. A. & Gilmartin, P. M. Analysis of late stage flower development in primula vulgaris reveals novel differences in cell morphology and temporal aspects of floral


heteromorphy. _New Phytol._ 171, 591–603 (2006). PubMed  Google Scholar  * Shivanna, K. R., Heslop-Harrison, J. & Heslop-Harrison, Y. Heterostyly in primula. 2. Sites of pollen


inhibition, and effects of pistil constituents on compatible and incompatible pollen tube growth. _Protoplasma_ 107, 319–337 (1981). Article  Google Scholar  * Richards, A. J. & Ibrahim,


H. B. The breeding system in primula veris L .II. pollen-Tube growth and seed-Set. _New Phytol._ 90, 305–314 (1982). Article  Google Scholar  * Lewis, D. Comparative incompatibility in


angiosperms and fungi. _Adv. Genet._ 6, 235–285 (1954). Article  CAS  Google Scholar  * Dowrick, V. P. J. Heterostyly and homostyly in _Primula obconica_. _Heredity_ 10, 219–236 (1956).


Article  Google Scholar  * Lloyd, D. G. & Webb, C. J. in _Evolution and Function of Heterostyly_ (ed. Barrett, S. C. H. ) 151–175 (Springer Verlag, 1992). Book  Google Scholar  *


Charlesworth, D. & Charlesworth, B. Model for the evolution of distyly. _Am. Nat._ 114, 467–498 (1979). Article  Google Scholar  * Bodmer, W. F. The genetics of homostyly in populations


of _Primula vulgaris_. _Phil. Trans. R. Soc. Lond. B_ 242, 517–549 (1960). Article  Google Scholar  * Fisher, R. A. A theoretical system of selection for homostyle. _Primula Sankhya._ 9,


325–342 (1949). Google Scholar  * Piper, J. G., Charlesworth, B. & Charlesworth, D. A high-rate of self-fertilization and increased seed fertility of homostyle primroses. _Nature._ 310,


50–51 (1984). Article  Google Scholar  * Crosby, J. L. High proportions of homostyle plants in populations of _Primula vulgaris_. _Nature._ 145, 672–673 (1940). Article  Google Scholar  *


Crosby, J. L. Selection of an unfavourable gene complex. _Evol. Ecol. Res._ 3, 212–230 (1949). CAS  Google Scholar  * Webster, M. A. & Gilmartin, P. M. A comparison of early floral


ontogeny in wild-type and floral homeotic mutant phenotypes of _Primula. Planta_ 216, 903–917 (2003). CAS  PubMed  Google Scholar  * McCubbin, A. G., Lee, C. & Hetrick, A. Identification


of genes showing differential expression between morphs in developing flowers of _Primula vulgaris_. _Sex. Plant Reprod._ 19, 63–72 (2006). Article  CAS  Google Scholar  * Li, J., Webster,


M. A., Furuya, M. & Gilmartin, P. M. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the _Primula S_ locus. _Plant J._ 51, 18–31 (2007).


Article  CAS  Google Scholar  * Manfield, I. W. _et al._ Molecular characterization of DNA sequences from the _Primula vulgaris_ _S_ locus. _J. Exp. Bot._ 56, 1177–1188 (2005). Article  CAS


  Google Scholar  * Cocker, J. _et al._ Oakleaf: an S locus-linked mutation of _Primula vulgaris_ that affects leaf and flower development. _New Phytol._ 208, 149–161 (2015). Article  CAS 


Google Scholar  * Li, J. _et al._ _Hose in Hose_, an _S_ locus-linked mutant of _Primula vulgaris_ is caused by an unstable mutation at the _Globosa_ locus. _Proc. Natl Acad. Sci. USA_ 107,


5664–5668 (2010). Article  CAS  Google Scholar  * Li, J. _et al._ The _S_ locus-linked _Primula_ homeotic mutant _sepaloid_ shows characteristics of a B-function mutant but does not result


from mutation in a B-function gene. _Plant J._ 56, 1–12 (2008). Article  CAS  Google Scholar  * Yoshida, Y. _et al._ QTL analysis of heterostyly in _Primula sieboldii_ and its application


for morph identification in wild populations. _Ann. Bot._ 108, 133–142 (2011). Article  Google Scholar  * Li, J. _et al_. Integration of genetic and physical maps of the _Primula vulgaris S_


locus and localization by chromosome _in situ_ hybridisation. _New Phytol._ 208, 137–148 (2015). Article  CAS  Google Scholar  * Nowak, M. D. _et al._ The draft genome of _Primula veris_


yields insight into the molecular basis of heterostyly. _Genome Biol._ 16, 16 (2015). Article  Google Scholar  * Verhoef, N. _et al._ Brassinosteroid biosynthesis and signalling in _Petunia


hybrida_. _J. Exp. Bot._ 64, 2435–2448 (2013). Article  CAS  Google Scholar  * Turk, E. M. _et al._ CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis


and plant steroid signal transduction. _Plant Physiol._ 133, 1643–1653 (2003). Article  CAS  Google Scholar  * Abbasi, N., Park, Y.-I. & Choi, S.-B. Pumilio Puf domain RNA-binding


proteins in _Arabidopsis_. _Plant Signal. Behav._ 6, 364–368 (2011). Article  CAS  Google Scholar  * Kim, H. J., Chiang, Y.-H., Kieber, J. J. & Schaller, G. E. SCFKMD controls cytokinin


signaling by regulating the degradation of type-B response regulators. _Proc. Natl Acad. Sci. USA_ 110, 10028–10033 (2013). Article  CAS  Google Scholar  * Webster, M. A. & Grant, C. J.


The inheritance of calyx morph variants in _Primula vulgaris_ (Huds). _Heredity_ 64, 121–124 (1990). Article  Google Scholar  * Viaene, T. _et al._ Pistillata-duplications as a mode for


floral diversification in (Basal) asterids. _Mol. Biol. Evol._ 26, 2627–2645 (2009). Article  CAS  Google Scholar  * Xia, X. DAMBE5: a comprehensive software package for data analysis in


molecular biology and evolution. _Mol. Biol. Evol._ 30, 1720–1728 (2013). Article  CAS  Google Scholar  * Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T.


A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. _New Phytol._ 207, 437–453 (2015). Article  Google Scholar  * Bell, C. D., Soltis, D. E. &


Soltis, P. S. The age and diversification of the angiosperms re-revisited. _Am. J. Bot._ 97, 1296–1303 (2010). Article  Google Scholar  * Mast, A. R. _et al._ Phylogenetic relationships in


_Primula_ L. and related genera (Primulaceae) based on noncoding chloroplast DNA. _Int. J. Plant Sci._ 162, 1381–1400 (2001). Article  CAS  Google Scholar  * Joron, M. _et al._ Chromosomal


rearrangements maintain a polymorphic supergene controlling butterfly mimicry. _Nature_ 477, 203–206 (2011). Article  CAS  Google Scholar  * Thomas, J. W. _et al._ The chromosomal


polymorphism linked to variation in social behavior in the white-throated sparrow (_Zonotrichia albicollis_) is a complex rearrangement and suppressor of recombination. _Genetics_ 179,


1455–1468 (2008). Article  CAS  Google Scholar  * Wang, J. _et al._ A Y-like social chromosome causes alternative colony organization in fire ants. _Nature_ 493, 664–668 (2013). Article  CAS


  Google Scholar  * Turgeon, B. G. & Yoder, O. C. Proposed nomenclature for mating type genes of filamentous ascomycetes. _Fungal Genet. Biol._ 31, 1–5 (2000). Article  CAS  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank M. Lappage, M. Hughes and P. Wells for horticultural support; colleagues at TGAC for Illumina sequencing; A. Thanki for TGAC Browser


support; O. Kent for _P. elatior_ _GLO_ and _GLO__T_ sequences; Norfolk Wildlife Trust, Suffolk Wildlife Trust and Norfolk County Council for permission to sample _P. veris_, _P. elatior_


and _P. vulgaris_ respectively; M. Gage, B. Davies and D. Bowles for comments on the manuscript; W. Wang for advice on _k_-means analysis; BBSRC for funding via grant BB/H019278/2, and prior


awards G11027 and P11021; The Gatsby Foundation for early stage funding; University of Leeds, Durham University and University of East Anglia for support to P.M.G. over several years of the


project. CvO was funded by the Earth & Life Systems Alliance (ELSA). P.M.G.'s laboratory is hosted at the John Innes Centre under the UEA-JIC Norwich Research Park collaboration.


AUTHOR INFORMATION Author notes * Sarah Dyer & Mario Caccamo Present address: †Present address: National Institute for Agricultural Botany, Huntingdon Road, Cambridge CB3 0LE, UK, *


Jinhong Li and Jonathan M. Cocker: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * School of Biological Sciences, University of East Anglia, Norwich Research Park,


Norwich, NR4 7TJ, UK Jinhong Li, Jonathan M. Cocker, Margaret A. Webster & Philip M. Gilmartin * John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK Jinhong Li, Jonathan M.


Cocker, Margaret A. Webster & Philip M. Gilmartin * The Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK Jonathan Wright, Mark McMullan, Sarah Dyer, David Swarbreck & 


Mario Caccamo * School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK Cock van Oosterhout Authors * Jinhong Li View author publications You


can also search for this author inPubMed Google Scholar * Jonathan M. Cocker View author publications You can also search for this author inPubMed Google Scholar * Jonathan Wright View


author publications You can also search for this author inPubMed Google Scholar * Margaret A. Webster View author publications You can also search for this author inPubMed Google Scholar *


Mark McMullan View author publications You can also search for this author inPubMed Google Scholar * Sarah Dyer View author publications You can also search for this author inPubMed Google


Scholar * David Swarbreck View author publications You can also search for this author inPubMed Google Scholar * Mario Caccamo View author publications You can also search for this author


inPubMed Google Scholar * Cock van Oosterhout View author publications You can also search for this author inPubMed Google Scholar * Philip M. Gilmartin View author publications You can also


search for this author inPubMed Google Scholar CONTRIBUTIONS J.L. contributed to project design, performed all molecular analyses, generated the _S_ locus assembly, manually annotated the


_S_ locus gene structures and undertook data analysis. J.M.C. carried out bioinformatic analyses, including automated annotation of the _S_ locus region, undertook _in silico_ gene


expression and _k_-means clustering analyses, assembled genome sequences and library scaffolds, generated the molecular phylogeny, undertook recombination analysis of the _S_ locus flanking


regions and contributed to project design. J.W. assembled genome sequences and library scaffolds, contributed to genome annotation and generated the automated gene model predictions across


the _S_ locus, aligned sequencing reads to the _S_ locus assembly and contributed to project design. M.A.W. contributed the inbred long homostyle line, other genetic resources and classical


genetics, identified the short homostyle mutant and generated the three-point cross used to demonstrate linkage. M.M. and C.v.O. contributed to the molecular phylogeny construction,


evolutionary data analysis and recombination analysis. S.A., D.S. and M.C. contributed to the genome sequencing strategy, assembly and annotation that underpins this project. P.M.G.


conceived, designed and directed the project, contributed to data analysis, prepared the figures and drafted the manuscript, with revision input from C.v.O.; all authors contributed to


editing the manuscript. CORRESPONDING AUTHOR Correspondence to Philip M. Gilmartin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Supplementary References, Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary Sequence Analyses 1–3.


(PDF 1701 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Li, J., Cocker, J., Wright, J. _et al._ Genetic architecture and evolution of the _S_


locus supergene in _Primula vulgaris_. _Nature Plants_ 2, 16188 (2016). https://doi.org/10.1038/nplants.2016.188 Download citation * Received: 08 September 2015 * Accepted: 31 October 2016 *


Published: 02 December 2016 * DOI: https://doi.org/10.1038/nplants.2016.188 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative