Observation of the thermal casimir force

feature-image

Play all audios:

Loading...

ABSTRACT Quantum theory predicts the existence of the Casimir force between macroscopic bodies, a force arising from the zero-point energy of electromagnetic field modes around them. A


thermal Casimir force, due to thermal rather than quantum fluctuations of the electromagnetic field at finite temperature, was theoretically predicted long ago. Here we report the


experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 μm and 7 μm.


An electrostatic force caused by potential patches on the plates’ surfaces is included in the analysis. Previous measurements of the quantum-fluctuation-induced force have been unable to


clearly settle the question of whether the correct low-frequency form of the dielectric constant dispersion for calculating Casimir forces is the Drude model or the plasma model. Our


experimental results are in excellent agreement (reduced _χ_2 of 1.04) with the Casimir force calculated using the Drude model, including the _T_=300 K thermal force, which dominates over


the quantum fluctuation-induced force at separations greater than 3 μm. The plasma model result is excluded in the measured separation range. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


RADIATIVE LOSS OF COHERENCE IN FREE ELECTRONS: A LONG-RANGE QUANTUM PHENOMENON Article Open access 26 January 2024 FINGERPRINTS OF NONEQUILIBRIUM STATIONARY DISTRIBUTIONS IN DISPERSION


RELATIONS Article Open access 08 June 2021 SCHRÖDINGER–POISSON SYSTEMS UNDER GRADIENT FIELDS Article Open access 20 September 2022 REFERENCES * Casimir, H. B. G. On the attraction between


two perfectly conducting plates. _Proc. K. Ned. Akad. Wet._ 51, 793–795 (1948). MATH  Google Scholar  * Sparnaay, M. Measurements of attractive forces between flat plates. _Physica_ 24,


751–764 (1958). Article  ADS  Google Scholar  * Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. _Phys. Rev. Lett._ 78, 5–8 (1997). Article  ADS  Google Scholar


  * Lamoreaux, S. K. Casimir forces: Still surprising after 60 years. _Phys. Today_ 60, 40–45 (February, 2007). Article  Google Scholar  * Milonni, P. _The Quantum Vacuum : An Introduction


to Quantum Electrodynamics_ (Academic, 1994). Book  Google Scholar  * Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic


surfaces. _Phys. Rev. Lett._ 88, 041804 (2002). Article  ADS  Google Scholar  * Derjaguin, B. V. Untersuchungen über die Reibung und adhäsion, IV. _Kolloid-Z._ 69, 155–164 (1934). Article 


Google Scholar  * Blocki, J., Randrup, J., Swiatecki, W. J. & Tsang, C. F. Proximity forces. _Ann. Phys._ 105, 427–462 (1977). Article  ADS  Google Scholar  * Lifshitz, E. M. The theory


of molecular attractive forces between solids. _Sov. Phys. JETP_ 2, 73–83 (1956). Google Scholar  * Sabisky, E. S. & Anderson, C. H. Verification of the Lifshitz theory of the van der


Waals potential using liquid-helium films. _Phys. Rev. A_ 7, 790–806 (1973). Article  ADS  Google Scholar  * Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to


0.9 μm. _Phys. Rev. Lett._ 81, 4549–4552 (1998). Article  ADS  Google Scholar  * Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of


microelectromechanical systems by the Casimir force. _Science_ 291, 1941–1944 (2001). Article  ADS  Google Scholar  * Decca, R. S., López, D., Fischbach, E. & Krause, D. E. Measurement


of the Casimir force between dissimilar metals. _Phys. Rev. Lett._ 91, 050402 (2003). Article  ADS  Google Scholar  * Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K.


Measurement of the short-range attractive force between Ge plates using a torsion balance. _Phys. Rev. Lett._ 103, 060401 (2009). Article  ADS  Google Scholar  * Feiler, A. A., Bergstrom, L.


& Rutland, M. W. Superlubricity using repulsive van der Waals forces. _Langmuir_ 24, 2274–2276 (2008). Article  Google Scholar  * Munday, J. N., Capasso, F. & Parsegian, V. A.


Measured long-range repulsive Casimir–Lifshitz forces. _Nature_ 457, 170–173 (2009). Article  ADS  Google Scholar  * Obrecht, J. M. et al. Measurement of the temperature dependence of the


Casimir–Polder force. _Phys. Rev. Lett._ 98, 063201 (2007). Article  ADS  Google Scholar  * Bostrom, M. & Sernelius, B. E.. Thermal effects on the Casimir force in the 0.1–5 μm range.


_Phys. Rev. Lett._ 84, 4757–4760 (2000). Article  ADS  Google Scholar  * Brevik, I., Aarseth, J. B., Hoye, J. S. & Milton, K. A. Temperature dependence of the Casimir effect. _Phys. Rev.


E_ 71, 056101 (2005). Article  ADS  Google Scholar  * Bezerra, V. B., Klimchitskaya, G. L., Mostepanenko, V. M. & Romero, C. Violation of the Nernst heat theorem in the theory of the


thermal Casimir force between Drude metals. _Phys. Rev. A_ 69, 022119 (2004). Article  ADS  Google Scholar  * Decca, R. S. et al. Precise comparison of theory and new experiment for the


Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. _Ann. Phys._ 318, 37–80 (2005). Article  ADS  Google Scholar  * Kittel, C. & Kroemer,


H. _Thermal Physics_ (W. H. Freeman, 1980). Google Scholar  * Langer, S. A. & Sethna, J. P. Entropy of glasses. _Phys. Rev. Lett._ 61, 570–573 (1988). Article  ADS  Google Scholar  *


Intravaia, F. & Henkel, C. Casimir interaction from magnetically coupled eddy currents. _Phys. Rev. Lett._ 103, 130405 (2009). Article  ADS  Google Scholar  * Robertson, N. A. et al.


Kelvin probe measurements: Investigations of the patch effect with applications to ST-7 and LISA. _Class. Quantum Gravity_ 23, 2665–2680 (2006). Article  ADS  Google Scholar  * Robertson, N.


A. Report LIGO-G070481-00-R (available at http://www.ligo.caltech.edu/docs/G/G070481-00.pdf) (2007). * Antonini, P. et al. An experimental apparatus for measuring the Casimir effect at


large distances. _J. Phys. Conf. Ser._ 161, 012006 (2009). Article  Google Scholar  * Speake, C. C. & Trenkel, C. Forces between conducting surfaces due to spatial variations of surface


potential. _Phys. Rev. Lett._ 90, 160403 (2003). Article  ADS  Google Scholar  * Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K. Surface contact potential patches and


Casimir force measurements. _Phys. Rev. A_ 81, 022505 (2010). Article  ADS  Google Scholar  * Lamoreaux, S. K. Reanalysis of Casimir force measurements in the 0.6-to-6-μm range. _Phys. Rev.


A_ 82, 024102 (2010). Article  ADS  Google Scholar  * Yashchuk, V. V. et al. Surface roughness of stainless-steel mirrors for focusing soft X rays. _Appl. Opt._ 45, 4833–4842 (2006). Article


  ADS  Google Scholar  * Yashchuk, V. V. et al. in _Nano- and Micro-Metrology_ VOL. 5858 (eds Ottevaere, H., DeWolf, P. & Wiersma, D. S.) 58580A-12 (SPIE,2005). Google Scholar  * Rossi,


F. Contact potential measurement: Spacing-dependence errors. _Rev. Sci. Instrum._ 63, 4174–4181 (1992). Article  ADS  Google Scholar  * Cheran, L., Johnstone, S., Sadeghi, S. & Thompson,


M. Work-function measurement by high-resolution scanning Kelvin nanoprobe. _Meas. Sci. Technol._ 18, 567–578 (2007). ADS  Google Scholar  * Palik, E. D. (ed.) _Handbook of Optical Constants


of Solids_ (Academic, 1998). Download references ACKNOWLEDGEMENTS The authors thank V. Yashchuk for performing the surface roughness measurements, and acknowledge discussions with S. Eckel


and F. Intravaia. This work was supported by the DARPA/MTOs Casimir Effect Enhancement project under SPAWAR Contract No. N66001-09-1-2071. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Physics, Yale University, New Haven, Connecticut 06520-8120, PO Box 208120, USA A. O. Sushkov & S. K. Lamoreaux * Department of Physics, Seattle University, 901 12th


Avenue, Seattle, Washington 98122, USA W. J. Kim * Theoretical Division MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA D. A. R. Dalvit Authors * A. O. Sushkov


View author publications You can also search for this author inPubMed Google Scholar * W. J. Kim View author publications You can also search for this author inPubMed Google Scholar * D. A.


R. Dalvit View author publications You can also search for this author inPubMed Google Scholar * S. K. Lamoreaux View author publications You can also search for this author inPubMed Google


Scholar CONTRIBUTIONS A.O.S. performed data analysis and prepared the manuscript. W.J.K. carried out optical property measurements, theoretical force calculations, and programming for data


acquisition. D.A.R.D. provided theoretical support and calculations. S.K.L. performed data acquisition, programming and calibrations. CORRESPONDING AUTHOR Correspondence to A. O. Sushkov.


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Sushkov,


A., Kim, W., Dalvit, D. _et al._ Observation of the thermal Casimir force. _Nature Phys_ 7, 230–233 (2011). https://doi.org/10.1038/nphys1909 Download citation * Received: 17 September 2010


* Accepted: 17 December 2010 * Published: 06 February 2011 * Issue Date: March 2011 * DOI: https://doi.org/10.1038/nphys1909 SHARE THIS ARTICLE Anyone you share the following link with will


be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative