
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the
refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to
particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation
of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation. Access through your institution Buy or subscribe
This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access
$209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are
calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS
TIME-VARYING 3D OPTICAL TORQUE VIA A SINGLE BEAM Article Open access 11 January 2025 GEAR-LIKE ROTATABLE OPTICAL TRAPPING WITH RADIAL CARPET BEAMS Article Open access 16 July 2020 CONTROLLED
TRANSFER OF TRANSVERSE ORBITAL ANGULAR MOMENTUM TO OPTICALLY TRAPPED BIREFRINGENT MICROPARTICLES Article 07 April 2022 REFERENCES * Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. &
Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. _Phys. Rev. A_ 45, 8185–8189 (1992). Article ADS Google Scholar * He, H.,
Friese, M., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. _Phys. Rev.
Lett._ 75, 826–829 (1995). ADS Google Scholar * Simpson, N., Dholakia, K., Allen, L. & Padgett, M. Mechanical equivalence of spin and orbital angular momentum of light: an optical
spanner. _Opt. Lett._ 22, 52–54 (1997). ADS Google Scholar * Poynting, J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly
polarised light. _Proc. R. Soc. Lond. A_ 82, 560–567 (1909). ADS MATH Google Scholar * Beth, R. Mechanical detection and measurement of the angular momentum of light. _Phys. Rev._ 50,
115–125 (1936). ADS Google Scholar * Jackson, J. _Classical Electrodynamics_ 3rd edn (Wiley, 2007). MATH Google Scholar * Turnbull, G. A., Roberson, D. A., Smith, G. M., Allen, L. &
Padgett, M. J. Generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. _Opt. Commun._ 127, 183–188 (1996). ADS Google Scholar *
Beijersbergen, M. W., Allen, L., van der Veen, H. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. _Opt. Commun._ 96, 123–132 (1993). ADS
Google Scholar * Bazhenov, V., Vasnetsov, M. V. & Soskin, M. S. Laser-beams with screw dislocations in their wave-fronts. _JETP Lett._ 52, 429–431 (1990). Google Scholar * Heckenberg,
N. R., McDuff, R., Smith, C. P. & White, A. Generation of optical phase singularities by computer-generated holograms. _Opt. Lett._ 17, 221–223 (1992). ADS Google Scholar * Guo, C.,
Liu, X., He, J. & Wang, H. Optimal annulus structures of optical vortices. _Opt. Express_ 12, 4625–4634 (2004). ADS Google Scholar * Nye, J. F. & Berry, M. Dislocations in wave
trains. _Proc. R. Soc. Lond. A_ 336, 165–190 (1974). ADS MathSciNet MATH Google Scholar * Berry, M., Nye, J. & Wright, F. The elliptic umbilic diffraction catastrophe. _Phil. Trans.
R. Soc. Lond._ 291, 453–484 (1979). ADS Google Scholar * Coullet, P., Gil, G. & Rocca, F. Optical vortices. _Opt. Commun._ 73, 403–408 (1989). ADS Google Scholar * Wulff, K. et al.
Aberration correction in holographic optical tweezers. _Opt. Express_ 14, 4169–4174 (2006). ADS Google Scholar * Jesacher, A. et al. Wavefront correction of spatial light modulators using
an optical vortex image. _Opt. Express_ 15, 5801–5808 (2007). ADS Google Scholar * Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical
trap for dielectric particles. _Opt. Lett._ 11, 288–290 (1986). ADS Google Scholar * He, H., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical particle trapping with higher-order
doughnut beams produced using high efficiency computer generated holograms. _J. Mod. Opt._ 42, 217–223 (1995). ADS Google Scholar * Friese, M., Enger, J., Rubinsztein-Dunlop, H. &
Heckenberg, N. Optical angular-momentum transfer to trapped absorbing particles. _Phys. Rev. A_ 54, 1593–1596 (1996). ADS Google Scholar * Friese, M., Nieminen, T., Heckenberg, N. R. &
Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. _Nature._ 394, 348–350 (1998). ADS Google Scholar * Ashkin, A., Dziedzic, J. M. & Yamane,
T. Optical trapping and manipulation of single cells using infrared laser beams. _Nature._ 330, 769–771 (1987). ADS Google Scholar * Sato, S., Ishigure, M. & Inaba, H. Optical
trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams. _Electron. Lett._ 27, 1831–1832 (1991). Google Scholar *
Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. _Science_ 292, 912–914 (2001). ADS Google Scholar * MacDonald, M. et al. Revolving interference patterns
for the rotation of optically trapped particles. _Opt. Commun._ 201, 21–28 (2002). ADS Google Scholar * O'Neil, A. & Padgett, M. Rotational control within optical tweezers by use
of a rotating aperture. _Opt. Lett._ 27, 743–745 (2002). ADS Google Scholar * Kreysing, M. K. et al. The optical cell rotator. _Opt. Express_ 16, 16984–16992 (2008). ADS Google Scholar
* Hoerner, F., Woerdemann, M., Mueller, S., Maier, B. & Denz, C. Full 3d translational and rotational optical control of multiple rod-shaped bacteria. _J. Biophoton._ 3, 468–475 (2010).
Google Scholar * Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. _Phys. Rev. E_ 59, 3676–3681
(1999). ADS Google Scholar * Galajda, P. & Ormos, P. Orientation of flat particles in optical tweezers by linearly polarized light. _Opt. Express_ 11, 446–451 (2003). ADS Google
Scholar * Higurashi, E., Ukita, H., Tanaka, H. & Ohguchi, O. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. _Appl. Phys. Lett._ 64,
2209–2210 (1994). ADS Google Scholar * Higurashi, E., Ohguchi, O., Tamamura, T., Ukita, H. & Sawada, R. Optically induced rotation of dissymmetrically shaped fluorinated polyimide
micro-objects in optical traps. _J. Appl. Phys_ 82, 2773–2779 (1997). ADS Google Scholar * Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. _Appl. Phys.
Lett._ 78, 249–251 (2001). ADS Google Scholar * Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. _Appl. Phys. Lett._ 80,
4653–4655 (2002). ADS Google Scholar * Knöner, G. et al. Integrated optomechanical microelements. _Opt. Express_ 15, 5521–5530 (2007). ADS Google Scholar * Higurashi, E., Sawada, R.
& Ito, T. Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis. _Appl. Phys. Lett._ 72, 2951–2953 (1998). ADS Google Scholar *
Dienerowitz, M., Mazilu, M., Reece, P., Krauss, T. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. _Opt. Express_ 16, 4991–4999 (2008). ADS Google
Scholar * Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. _Biophys. J._ 61, 569–582 (1992). ADS Google Scholar * O'Neil, A.
& Padgett, M. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. _Opt. Commun._ 193, 45–50 (2001). ADS Google Scholar * Bowman, R., Gibson,
G. & Padgett, M. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. _Opt. Express_ 18, 11785–11790 (2010). ADS Google Scholar * Gahagan, K. &
Swartzlander, G. A. Optical vortex trapping of particles. _Opt. Lett._ 21, 827–829 (1996). ADS Google Scholar * Prentice, P. et al. Manipulation and filtration of low index particles with
holographic Laguerre–Gaussian optical trap arrays. _Opt. Express_ 12, 593–600 (2004). ADS Google Scholar * Lorenz, R. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous
droplets. _Anal. Chem._ 79, 224–228 (2007). Google Scholar * O'Neil, A., MacVicar, I., Allen, L. & Padgett, M. Intrinsic and extrinsic nature of the orbital angular momentum of a
light beam. _Phys. Rev. Lett._ 88, 053601 (2002). ADS Google Scholar * Garces-Chavez, V. et al. Observation of the transfer of the local angular momentum density of a multiringed light
beam to an optically trapped particle. _Phys. Rev. Lett._ 91, 093602 (2003). ADS Google Scholar * Curtis, J. & Grier, D. Structure of optical vortices. _Phys. Rev. Lett._ 90, 133901
(2003). ADS Google Scholar * Jesacher, A., Fürhapter, S., Maurer, C., Bernet, S. & Ritsch-Marte, M. Holographic optical tweezers for object manipulations at an air–liquid surface.
_Opt. Express_ 14, 6342–6352 (2006). ADS Google Scholar * Leach, J. & Padgett, M. Observation of chromatic effects near a white-light vortex. _New J. Phys._ 5, 154 (2003). ADS Google
Scholar * Mariyenko, I., Strohaber, J. & Uiterwaal, C. Creation of optical vortices in femtosecond pulses. _Opt. Express_ 13, 7599–7608 (2005). ADS Google Scholar * Sztul, H.,
Kartazayev, V. & Alfano, R. Laguerre–Gaussian supercontinuum. _Opt. Lett._ 31, 2725–2727 (2006). ADS Google Scholar * Wright, A., Girkin, J., Gibson, G., Leach, J. & Padgett, M.
Transfer of orbital angular momentum from a super-continuum, white-light beam. _Opt. Express_ 16, 9495–9500 (2008). ADS Google Scholar * Tao, S., Yuan, X., Lin, J., Peng, X. & Niu, H.
Fractional optical vortex beam induced rotation of particles. _Optics Express_ 13, 7726–7731 (2005). ADS Google Scholar * Courtial, J. & Padgett, M. Limit to the orbital angular
momentum per unit energy in a light beam that can be focussed onto a small particle. _Opt. Commun._ 173, 269–274 (2000). ADS Google Scholar * Hayasaki, Y., Itoh, M., Yatagai, T. &
Nisida, N. Nonmechanical optical manipulation of microparticle using spatial light modulator. _Opt. Rev._ 6, 24–27 (1999). Google Scholar * Reicherter, M., Haist, T., Wagemann, E. &
Tiziani, H. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. _Opt. Lett._ 24, 608–610 (1999). ADS Google Scholar * Liesener, J., Reicherter,
M., Haist, T. & Tiziani, H. Multi-functional optical tweezers using computer-generated holograms. _Opt. Commun._ 185, 77–82 (2000). ADS Google Scholar * Curtis, J., Koss, B. &
Grier, D. Dynamic holographic optical tweezers. _Opt. Commun._ 207, 169–175 (2002). ADS Google Scholar * Grier, D. A revolution in optical manipulation. _Nature._ 424, 810–816 (2003). ADS
Google Scholar * Curtis, J. & Grier, D. Modulated optical vortices. _Opt. Lett._ 28, 872–874 (2003). ADS Google Scholar * Eriksen, R., Rodrigo, P., Daria, V. & Gluckstad, J.
Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array. _Appl. Opt._ 42, 5107–5111 (2003). ADS Google Scholar * Preece, D. et al.
Independent polarisation control of multiple optical traps. _Opt. Express_ 16, 15897–15902 (2008). ADS Google Scholar * Roichman, Y., Grier, D. & Zaslavsky, G. Anomalous collective
dynamics in optically driven colloidal rings. _Phys. Rev. E_ 75, 020401 (2007). ADS Google Scholar * Ladavac, K. & Grier, D. Colloidal hydrodynamic coupling in concentric optical
vortices. _Europhys. Lett._ 70, 548–554 (2005). ADS Google Scholar * Lee, S.-H. & Grier, D. Giant colloidal diffusivity on corrugated optical vortices. _Phys. Rev. Lett._ 96, 190601
(2006). ADS Google Scholar * Ladavac, K. & Grier, D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. _Opt. Express_ 12, 1144–1149 (2004). ADS
Google Scholar * Pralle, A., Florin, E., Stelzer, E. & Horber, J. Local viscosity probed by photonic force microscopy. _Appl. Phys. A_ 66, S71–S73 (1998). Google Scholar * Bishop, A.,
Nieminen, T., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. _Phys. Rev. Lett._ 92, 198104 (2004). ADS Google Scholar * Parkin,
S. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. _Opt. Express_ 17, 21944–21955 (2009). ADS Google Scholar
* Vogel, R. et al. Synthesis and surface modification of birefringent vaterite microspheres. _Langmuir_ 25, 11672–11679 (2009). Google Scholar * Parkin, S. J., Knöner, G., Nieminen, T. A.,
Heckenberg, N. R. & Rubinsztein-Dunlop, H. Picoliter viscometry using optically rotated particles. _Phys. Rev. E_ 76, 041507 (2007). ADS Google Scholar * Leach, J. et al. Comparison of
Faxen's correction for a microsphere translating or rotating near a surface. _Phys. Rev. E_ 79, 026301 (2009). ADS Google Scholar * Leach, J., Mushfique, H., di Leonardo, R.,
Padgett, M. & Cooper, J. An optically driven pump for microfluidics. _Lab. Chip._ 6, 735–739 (2006). Google Scholar * Jesacher, A., Maurer, C., Schwaighofer, A., Bernet, S. &
Ritsch-Marte, M. Full phase and amplitude control of holographic optical tweezers with high efficiency. _Opt. Express_ 16, 4479–4486 (2008). ADS Google Scholar * Roichman, Y., Sun, B.,
Roichman, Y., Amato-Grill, J. & Grier, D. Optical forces arising from phase gradients. _Phys. Rev. Lett._ 100, 013602 (2008). ADS Google Scholar * Lee, S., Roichman, Y. & Grier, D.
Optical solenoid beams. _Opt. Express_ 18, 6988–6993 (2010). ADS Google Scholar * Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using airy wavepackets.
_Nature Photon._ 2, 675–678 (2008). ADS Google Scholar * Daria, V. R., Palima, D. Z. & Gluckstad, J. Optical twists in phase and amplitude. _Opt. Express_ 19, 476–481 (2011). ADS
Google Scholar * Asavei, T., Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical paddle-wheel. _Proc. SPIE_ 7400, 740020 (2009). ADS Google Scholar *
Lewittes, M., Arnold, S. & Oster, G. Radiometric levitation of micron sized spheres. _Appl. Phys. Lett._ 40, 455–457 (1982). ADS Google Scholar * Shvedov, V., Desyatnikov, A., Rode,
A., Krolikowski, W. & Kivshar, Y. Optical guiding of absorbing nanoclusters in air. _Opt. Express_ 17, 5743–5757 (2009). ADS Google Scholar * Shvedov, V. et al. Giant optical
manipulation. _Phys. Rev. Lett._ 105, 118103 (2010). ADS Google Scholar * Shvedov, V. et al. Selective trapping of multiple particles by volume speckle field. _Opt. Express_ 18, 3137–3142
(2010). ADS Google Scholar * O'Holleran, K., Dennis, M. R., Flossmann, F. & Padgett, M. J. Fractality of light's darkness. _Phys. Rev. Lett._ 100, 053902 (2008). ADS Google
Scholar * Furhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. _Opt. Express_ 13, 689–694 (2005). ADS Google Scholar * Swartzlander,
G. et al. Astronomical demonstration of an optical vortex coronagraph. _Opt. Express_ 16, 10200–10207 (2008). ADS Google Scholar * Dholakia, K., Simpson, N., Padgett, M. & Allen, L.
Second-harmonic generation and the orbital angular momentum of light. _Phys. Rev. A_ 54, R3742–R3745 (1996). ADS Google Scholar * Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A.
Entanglement of the orbital angular momentum states of photons. _Nature_ 412, 313–316 (2001). ADS Google Scholar * Gibson, G. et al. Free-space information transfer using light beams
carrying orbital angular momentum. _Opt. Express_ 12, 5448–5456 (2004). ADS Google Scholar * Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio
domain. _Phys. Rev. Lett._ 99, 087701 (2007). ADS Google Scholar Download references ACKNOWLEDGEMENTS M.J.P. acknowledges financial support from the Royal Society. Figures 2–4 were
produced with TIM, a custom Java raytracer (http://arxiv.org/abs/1101.3861v1). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * SUPA, School of Physics and Astronomy, University of Glasgow,
Glasgow, G12 8QQ, UK Miles Padgett & Richard Bowman Authors * Miles Padgett View author publications You can also search for this author inPubMed Google Scholar * Richard Bowman View
author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Miles Padgett. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT
THIS ARTICLE CITE THIS ARTICLE Padgett, M., Bowman, R. Tweezers with a twist. _Nature Photon_ 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81 Download citation * Published: 31 May
2011 * Issue Date: June 2011 * DOI: https://doi.org/10.1038/nphoton.2011.81 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link
Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative