Tweezers with a twist | Nature Photonics

feature-image

Play all audios:

Loading...

ABSTRACT The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the


refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to


particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation


of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


TIME-VARYING 3D OPTICAL TORQUE VIA A SINGLE BEAM Article Open access 11 January 2025 GEAR-LIKE ROTATABLE OPTICAL TRAPPING WITH RADIAL CARPET BEAMS Article Open access 16 July 2020 CONTROLLED


TRANSFER OF TRANSVERSE ORBITAL ANGULAR MOMENTUM TO OPTICALLY TRAPPED BIREFRINGENT MICROPARTICLES Article 07 April 2022 REFERENCES * Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. &


Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. _Phys. Rev. A_ 45, 8185–8189 (1992). Article  ADS  Google Scholar  * He, H.,


Friese, M., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. _Phys. Rev.


Lett._ 75, 826–829 (1995). ADS  Google Scholar  * Simpson, N., Dholakia, K., Allen, L. & Padgett, M. Mechanical equivalence of spin and orbital angular momentum of light: an optical


spanner. _Opt. Lett._ 22, 52–54 (1997). ADS  Google Scholar  * Poynting, J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly


polarised light. _Proc. R. Soc. Lond. A_ 82, 560–567 (1909). ADS  MATH  Google Scholar  * Beth, R. Mechanical detection and measurement of the angular momentum of light. _Phys. Rev._ 50,


115–125 (1936). ADS  Google Scholar  * Jackson, J. _Classical Electrodynamics_ 3rd edn (Wiley, 2007). MATH  Google Scholar  * Turnbull, G. A., Roberson, D. A., Smith, G. M., Allen, L. &


Padgett, M. J. Generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. _Opt. Commun._ 127, 183–188 (1996). ADS  Google Scholar  *


Beijersbergen, M. W., Allen, L., van der Veen, H. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. _Opt. Commun._ 96, 123–132 (1993). ADS 


Google Scholar  * Bazhenov, V., Vasnetsov, M. V. & Soskin, M. S. Laser-beams with screw dislocations in their wave-fronts. _JETP Lett._ 52, 429–431 (1990). Google Scholar  * Heckenberg,


N. R., McDuff, R., Smith, C. P. & White, A. Generation of optical phase singularities by computer-generated holograms. _Opt. Lett._ 17, 221–223 (1992). ADS  Google Scholar  * Guo, C.,


Liu, X., He, J. & Wang, H. Optimal annulus structures of optical vortices. _Opt. Express_ 12, 4625–4634 (2004). ADS  Google Scholar  * Nye, J. F. & Berry, M. Dislocations in wave


trains. _Proc. R. Soc. Lond. A_ 336, 165–190 (1974). ADS  MathSciNet  MATH  Google Scholar  * Berry, M., Nye, J. & Wright, F. The elliptic umbilic diffraction catastrophe. _Phil. Trans.


R. Soc. Lond._ 291, 453–484 (1979). ADS  Google Scholar  * Coullet, P., Gil, G. & Rocca, F. Optical vortices. _Opt. Commun._ 73, 403–408 (1989). ADS  Google Scholar  * Wulff, K. et al.


Aberration correction in holographic optical tweezers. _Opt. Express_ 14, 4169–4174 (2006). ADS  Google Scholar  * Jesacher, A. et al. Wavefront correction of spatial light modulators using


an optical vortex image. _Opt. Express_ 15, 5801–5808 (2007). ADS  Google Scholar  * Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical


trap for dielectric particles. _Opt. Lett._ 11, 288–290 (1986). ADS  Google Scholar  * He, H., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical particle trapping with higher-order


doughnut beams produced using high efficiency computer generated holograms. _J. Mod. Opt._ 42, 217–223 (1995). ADS  Google Scholar  * Friese, M., Enger, J., Rubinsztein-Dunlop, H. &


Heckenberg, N. Optical angular-momentum transfer to trapped absorbing particles. _Phys. Rev. A_ 54, 1593–1596 (1996). ADS  Google Scholar  * Friese, M., Nieminen, T., Heckenberg, N. R. &


Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. _Nature._ 394, 348–350 (1998). ADS  Google Scholar  * Ashkin, A., Dziedzic, J. M. & Yamane,


T. Optical trapping and manipulation of single cells using infrared laser beams. _Nature._ 330, 769–771 (1987). ADS  Google Scholar  * Sato, S., Ishigure, M. & Inaba, H. Optical


trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams. _Electron. Lett._ 27, 1831–1832 (1991). Google Scholar  *


Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. _Science_ 292, 912–914 (2001). ADS  Google Scholar  * MacDonald, M. et al. Revolving interference patterns


for the rotation of optically trapped particles. _Opt. Commun._ 201, 21–28 (2002). ADS  Google Scholar  * O'Neil, A. & Padgett, M. Rotational control within optical tweezers by use


of a rotating aperture. _Opt. Lett._ 27, 743–745 (2002). ADS  Google Scholar  * Kreysing, M. K. et al. The optical cell rotator. _Opt. Express_ 16, 16984–16992 (2008). ADS  Google Scholar 


* Hoerner, F., Woerdemann, M., Mueller, S., Maier, B. & Denz, C. Full 3d translational and rotational optical control of multiple rod-shaped bacteria. _J. Biophoton._ 3, 468–475 (2010).


Google Scholar  * Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. _Phys. Rev. E_ 59, 3676–3681


(1999). ADS  Google Scholar  * Galajda, P. & Ormos, P. Orientation of flat particles in optical tweezers by linearly polarized light. _Opt. Express_ 11, 446–451 (2003). ADS  Google


Scholar  * Higurashi, E., Ukita, H., Tanaka, H. & Ohguchi, O. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. _Appl. Phys. Lett._ 64,


2209–2210 (1994). ADS  Google Scholar  * Higurashi, E., Ohguchi, O., Tamamura, T., Ukita, H. & Sawada, R. Optically induced rotation of dissymmetrically shaped fluorinated polyimide


micro-objects in optical traps. _J. Appl. Phys_ 82, 2773–2779 (1997). ADS  Google Scholar  * Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. _Appl. Phys.


Lett._ 78, 249–251 (2001). ADS  Google Scholar  * Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. _Appl. Phys. Lett._ 80,


4653–4655 (2002). ADS  Google Scholar  * Knöner, G. et al. Integrated optomechanical microelements. _Opt. Express_ 15, 5521–5530 (2007). ADS  Google Scholar  * Higurashi, E., Sawada, R.


& Ito, T. Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis. _Appl. Phys. Lett._ 72, 2951–2953 (1998). ADS  Google Scholar  *


Dienerowitz, M., Mazilu, M., Reece, P., Krauss, T. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. _Opt. Express_ 16, 4991–4999 (2008). ADS  Google


Scholar  * Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. _Biophys. J._ 61, 569–582 (1992). ADS  Google Scholar  * O'Neil, A.


& Padgett, M. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. _Opt. Commun._ 193, 45–50 (2001). ADS  Google Scholar  * Bowman, R., Gibson,


G. & Padgett, M. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. _Opt. Express_ 18, 11785–11790 (2010). ADS  Google Scholar  * Gahagan, K. &


Swartzlander, G. A. Optical vortex trapping of particles. _Opt. Lett._ 21, 827–829 (1996). ADS  Google Scholar  * Prentice, P. et al. Manipulation and filtration of low index particles with


holographic Laguerre–Gaussian optical trap arrays. _Opt. Express_ 12, 593–600 (2004). ADS  Google Scholar  * Lorenz, R. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous


droplets. _Anal. Chem._ 79, 224–228 (2007). Google Scholar  * O'Neil, A., MacVicar, I., Allen, L. & Padgett, M. Intrinsic and extrinsic nature of the orbital angular momentum of a


light beam. _Phys. Rev. Lett._ 88, 053601 (2002). ADS  Google Scholar  * Garces-Chavez, V. et al. Observation of the transfer of the local angular momentum density of a multiringed light


beam to an optically trapped particle. _Phys. Rev. Lett._ 91, 093602 (2003). ADS  Google Scholar  * Curtis, J. & Grier, D. Structure of optical vortices. _Phys. Rev. Lett._ 90, 133901


(2003). ADS  Google Scholar  * Jesacher, A., Fürhapter, S., Maurer, C., Bernet, S. & Ritsch-Marte, M. Holographic optical tweezers for object manipulations at an air–liquid surface.


_Opt. Express_ 14, 6342–6352 (2006). ADS  Google Scholar  * Leach, J. & Padgett, M. Observation of chromatic effects near a white-light vortex. _New J. Phys._ 5, 154 (2003). ADS  Google


Scholar  * Mariyenko, I., Strohaber, J. & Uiterwaal, C. Creation of optical vortices in femtosecond pulses. _Opt. Express_ 13, 7599–7608 (2005). ADS  Google Scholar  * Sztul, H.,


Kartazayev, V. & Alfano, R. Laguerre–Gaussian supercontinuum. _Opt. Lett._ 31, 2725–2727 (2006). ADS  Google Scholar  * Wright, A., Girkin, J., Gibson, G., Leach, J. & Padgett, M.


Transfer of orbital angular momentum from a super-continuum, white-light beam. _Opt. Express_ 16, 9495–9500 (2008). ADS  Google Scholar  * Tao, S., Yuan, X., Lin, J., Peng, X. & Niu, H.


Fractional optical vortex beam induced rotation of particles. _Optics Express_ 13, 7726–7731 (2005). ADS  Google Scholar  * Courtial, J. & Padgett, M. Limit to the orbital angular


momentum per unit energy in a light beam that can be focussed onto a small particle. _Opt. Commun._ 173, 269–274 (2000). ADS  Google Scholar  * Hayasaki, Y., Itoh, M., Yatagai, T. &


Nisida, N. Nonmechanical optical manipulation of microparticle using spatial light modulator. _Opt. Rev._ 6, 24–27 (1999). Google Scholar  * Reicherter, M., Haist, T., Wagemann, E. &


Tiziani, H. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. _Opt. Lett._ 24, 608–610 (1999). ADS  Google Scholar  * Liesener, J., Reicherter,


M., Haist, T. & Tiziani, H. Multi-functional optical tweezers using computer-generated holograms. _Opt. Commun._ 185, 77–82 (2000). ADS  Google Scholar  * Curtis, J., Koss, B. &


Grier, D. Dynamic holographic optical tweezers. _Opt. Commun._ 207, 169–175 (2002). ADS  Google Scholar  * Grier, D. A revolution in optical manipulation. _Nature._ 424, 810–816 (2003). ADS


  Google Scholar  * Curtis, J. & Grier, D. Modulated optical vortices. _Opt. Lett._ 28, 872–874 (2003). ADS  Google Scholar  * Eriksen, R., Rodrigo, P., Daria, V. & Gluckstad, J.


Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array. _Appl. Opt._ 42, 5107–5111 (2003). ADS  Google Scholar  * Preece, D. et al.


Independent polarisation control of multiple optical traps. _Opt. Express_ 16, 15897–15902 (2008). ADS  Google Scholar  * Roichman, Y., Grier, D. & Zaslavsky, G. Anomalous collective


dynamics in optically driven colloidal rings. _Phys. Rev. E_ 75, 020401 (2007). ADS  Google Scholar  * Ladavac, K. & Grier, D. Colloidal hydrodynamic coupling in concentric optical


vortices. _Europhys. Lett._ 70, 548–554 (2005). ADS  Google Scholar  * Lee, S.-H. & Grier, D. Giant colloidal diffusivity on corrugated optical vortices. _Phys. Rev. Lett._ 96, 190601


(2006). ADS  Google Scholar  * Ladavac, K. & Grier, D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. _Opt. Express_ 12, 1144–1149 (2004). ADS 


Google Scholar  * Pralle, A., Florin, E., Stelzer, E. & Horber, J. Local viscosity probed by photonic force microscopy. _Appl. Phys. A_ 66, S71–S73 (1998). Google Scholar  * Bishop, A.,


Nieminen, T., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. _Phys. Rev. Lett._ 92, 198104 (2004). ADS  Google Scholar  * Parkin,


S. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. _Opt. Express_ 17, 21944–21955 (2009). ADS  Google Scholar 


* Vogel, R. et al. Synthesis and surface modification of birefringent vaterite microspheres. _Langmuir_ 25, 11672–11679 (2009). Google Scholar  * Parkin, S. J., Knöner, G., Nieminen, T. A.,


Heckenberg, N. R. & Rubinsztein-Dunlop, H. Picoliter viscometry using optically rotated particles. _Phys. Rev. E_ 76, 041507 (2007). ADS  Google Scholar  * Leach, J. et al. Comparison of


Faxen's correction for a microsphere translating or rotating near a surface. _Phys. Rev. E_ 79, 026301 (2009). ADS  Google Scholar  * Leach, J., Mushfique, H., di Leonardo, R.,


Padgett, M. & Cooper, J. An optically driven pump for microfluidics. _Lab. Chip._ 6, 735–739 (2006). Google Scholar  * Jesacher, A., Maurer, C., Schwaighofer, A., Bernet, S. &


Ritsch-Marte, M. Full phase and amplitude control of holographic optical tweezers with high efficiency. _Opt. Express_ 16, 4479–4486 (2008). ADS  Google Scholar  * Roichman, Y., Sun, B.,


Roichman, Y., Amato-Grill, J. & Grier, D. Optical forces arising from phase gradients. _Phys. Rev. Lett._ 100, 013602 (2008). ADS  Google Scholar  * Lee, S., Roichman, Y. & Grier, D.


Optical solenoid beams. _Opt. Express_ 18, 6988–6993 (2010). ADS  Google Scholar  * Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using airy wavepackets.


_Nature Photon._ 2, 675–678 (2008). ADS  Google Scholar  * Daria, V. R., Palima, D. Z. & Gluckstad, J. Optical twists in phase and amplitude. _Opt. Express_ 19, 476–481 (2011). ADS 


Google Scholar  * Asavei, T., Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical paddle-wheel. _Proc. SPIE_ 7400, 740020 (2009). ADS  Google Scholar  *


Lewittes, M., Arnold, S. & Oster, G. Radiometric levitation of micron sized spheres. _Appl. Phys. Lett._ 40, 455–457 (1982). ADS  Google Scholar  * Shvedov, V., Desyatnikov, A., Rode,


A., Krolikowski, W. & Kivshar, Y. Optical guiding of absorbing nanoclusters in air. _Opt. Express_ 17, 5743–5757 (2009). ADS  Google Scholar  * Shvedov, V. et al. Giant optical


manipulation. _Phys. Rev. Lett._ 105, 118103 (2010). ADS  Google Scholar  * Shvedov, V. et al. Selective trapping of multiple particles by volume speckle field. _Opt. Express_ 18, 3137–3142


(2010). ADS  Google Scholar  * O'Holleran, K., Dennis, M. R., Flossmann, F. & Padgett, M. J. Fractality of light's darkness. _Phys. Rev. Lett._ 100, 053902 (2008). ADS  Google


Scholar  * Furhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. _Opt. Express_ 13, 689–694 (2005). ADS  Google Scholar  * Swartzlander,


G. et al. Astronomical demonstration of an optical vortex coronagraph. _Opt. Express_ 16, 10200–10207 (2008). ADS  Google Scholar  * Dholakia, K., Simpson, N., Padgett, M. & Allen, L.


Second-harmonic generation and the orbital angular momentum of light. _Phys. Rev. A_ 54, R3742–R3745 (1996). ADS  Google Scholar  * Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A.


Entanglement of the orbital angular momentum states of photons. _Nature_ 412, 313–316 (2001). ADS  Google Scholar  * Gibson, G. et al. Free-space information transfer using light beams


carrying orbital angular momentum. _Opt. Express_ 12, 5448–5456 (2004). ADS  Google Scholar  * Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio


domain. _Phys. Rev. Lett._ 99, 087701 (2007). ADS  Google Scholar  Download references ACKNOWLEDGEMENTS M.J.P. acknowledges financial support from the Royal Society. Figures 2–4 were


produced with TIM, a custom Java raytracer (http://arxiv.org/abs/1101.3861v1). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * SUPA, School of Physics and Astronomy, University of Glasgow,


Glasgow, G12 8QQ, UK Miles Padgett & Richard Bowman Authors * Miles Padgett View author publications You can also search for this author inPubMed Google Scholar * Richard Bowman View


author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Miles Padgett. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Padgett, M., Bowman, R. Tweezers with a twist. _Nature Photon_ 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81 Download citation * Published: 31 May


2011 * Issue Date: June 2011 * DOI: https://doi.org/10.1038/nphoton.2011.81 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative