
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT During the past 20 years, the manipulation of atoms and molecules at surfaces has allowed the construction and characterization of model systems that could, potentially, act as
building blocks for future nanoscale devices. The majority of these experiments were performed with scanning tunnelling microscopy at cryogenic temperatures. Recently, it has been shown that
another scanning probe technique, the atomic force microscope, is capable of positioning single atoms even at room temperature. Here, we review progress in the manipulation of atoms and
molecules with the atomic force microscope, and discuss the new opportunities presented by this technique. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue
Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL
ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SCANNING PROBE MICROSCOPY Article 13 May
2021 BINARY-STATE SCANNING PROBE MICROSCOPY FOR PARALLEL IMAGING Article Open access 17 March 2022 PHOTO-INDUCED FORCE MICROSCOPY Article 29 May 2025 REFERENCES * Binnig, G., Rohrer, H.,
Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. _Phys. Rev. Lett._ 49, 57–61 (1982). Article Google Scholar * Eigler, D. M. & Schweizer, E. K. Positioning
single atoms with a scanning tunnelling microscope. _Nature_ 344, 524–526 (1990). Article CAS Google Scholar * Lyo, I.-W. & Avouris, P. Field-induced nanometer- to atomic-scale
manipulation of silicon surfaces with the STM. _Science_ 253, 173–176 (1991). Article CAS Google Scholar * Eigler, D. M., Lutz, C. P. & Rudger, W. E. An atomic switch realized with
the scanning tunnelling microscope. _Nature_ 352, 600–603 (1991). Article CAS Google Scholar * Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch.
_Nature_ 433, 47–50 (2005). Article CAS Google Scholar * Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. _Science_ 297,
1853–1856 (2002). Article CAS Google Scholar * Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. _Science_ 302, 77–81 (2003). Article
CAS Google Scholar * Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. _Science_
312, 1196–1199 (2006). Article CAS Google Scholar * Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. _Science_ 323, 1193–1197
(2009). Article CAS Google Scholar * Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. _Science_ 298, 1381–1387 (2002). Article CAS Google Scholar *
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. _Science_ 262, 218–220 (1993). Article CAS Google Scholar * Heller, E. J.,
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and adsorption of surface electron waves in quantum corrals. _Nature_ 369, 464–466 (1994). Article Google Scholar * Manoharan,
H., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. _Nature_ 403, 512–515 (2000). Article CAS Google Scholar * Moon, C. R., Mattos,
L. S., Foster, B. K., Zeltzer, G. & Manoharan, H. C. Quantum holographic encoding in a two-dimensional electron gas. _Nature Nanotech._ 4, 167–172 (2009). Article CAS Google Scholar *
Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. _Nature_ 442,
436–439 (2006). Article CAS Google Scholar * Yamachika, R., Grobis, M., Wachowiak, A. & Crommie, M. F. Controlled atomic doping of a single C60 molecule. _Science_ 304, 281–284
(2004). Article CAS Google Scholar * Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards
single molecule engineering. _Phys. Rev. Lett._ 85, 2777–2780 (2000). Article CAS Google Scholar * Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled
room temperature positioning of individual molecules: Molecular flexure and motion. _Science_ 271, 181–184 (1996). Article CAS Google Scholar * Gimzewski, J. K. et al. Rotation of a
single molecule within a supramolecular bearing. _Science_ 281, 531–533 (1998). Article CAS Google Scholar * Stipe, B. C. & Ho, W. Inducing and viewing the rotational motion of a
single molecule. _Science_ 279, 1907–1909 (1998). Article CAS Google Scholar * Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by
excitation of internal vibration mode. _Science_ 295, 2055–2058 (2002). Article CAS Google Scholar * Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. Selectivity in
vibrationally mediated single-molecule chemistry. _Nature_ 423, 525–528 (2003). Article CAS Google Scholar * Lee, H. J. & Ho, W. Single-bond formation and characterization with a
scanning tunneling microscope. _Science_ 286, 1719–1722 (1999). Article CAS Google Scholar * Chen, W., Jamneala, T., Madhavan, V. & Crommie, M. F. Disappearance of the Kondo resonance
for atomically fabricated cobalt dimers. _Phys. Rev. B_ 60, R8529 (1999). Article CAS Google Scholar * Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered
atomic structures. _Science_ 312, 1021–1023 (2006). Article CAS Google Scholar * Giessibl, F. J. & Quate, C. F. Exploring the nanoworld with atomic force microscopy. _Physics Today_
59, 44–50 (2006). Article CAS Google Scholar * Giessibl, F. J. Advances in atomic force microscopy. _Rev. Mod. Phys._ 75, 949–983 (2003). Article CAS Google Scholar * García, R. &
Pérez, R. Dynamic atomic force microscopy methods. _Surf. Sci. Rep._ 47, 197–301 (2002). Article Google Scholar * Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. _Phys.
Rev. Lett._ 56, 930–933 (1986). Article CAS Google Scholar * Gerber, C. & Lang, H. How the doors to the nanoworld were opened. _Nature Nanotech._ 1, 3–5 (2006). Article CAS Google
Scholar * Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. _Phys. Rev. Lett._ 50, 120–123 (1983). Article CAS Google Scholar *
Giessibl, F. J. Atomic resolution of the silicon(111)-(7 × 7) surface by atomic force microscopy. _Science_ 267, 68–71 (1995). Article CAS Google Scholar * Sugimoto, Y. et al. Atom inlays
performed at room temperature using atomic force microscopy. _Nature Mater._ 4, 156–159 (2005). Article CAS Google Scholar * Binnig, G. & Rohrer, H. In touch with atoms. _Rev. Mod.
Phys._ 71, S324 (1999). Article CAS Google Scholar * Pérez, R., Payne, M., Štich, I. & Terakura, K. Role of covalent tip-surface interactions in noncontact atomic force microscopy.
_Phys. Rev. Lett._ 78, 678–681 (1997). Article Google Scholar * Livshits, A. I., Shluger, A. L., Rohl, A. L. & Foster, A. S. Model of noncontact scanning force microscopy on ionic
surfaces. _Phys. Rev. B_ 59, 2436–2448 (1999). Article CAS Google Scholar * Dieška, P., Štich, I. & Pérez, R. Covalent and reversible short-range electrostatic imaging in noncontact
atomic force microscopy. _Phys. Rev. Lett._ 91, 216401 (2003). Article CAS Google Scholar * Hölscher, H., Allers, W., Schwarz, U. D., Schwarz, A. & Wiesendanger, R. Simulation of
NC-AFM images of xenon(111). _Appl. Phys. A_ 72, S35–S38 (2001). Article Google Scholar * Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using
high-Q cantilevers for enhanced force microscope sensitivity. _J. Appl. Phys._ 69, 668–673 (1991). Article Google Scholar * Guggisberg, M. et al. Separation of interactions by noncontact
force microscopy. _Phys. Rev. B_ 61, 11151–11155 (2000). Article CAS Google Scholar * Giessibl, F. J., Hembacher, S., Herz, M., Schiller, C. & Mannhart, J. Stability considerations
and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. _Nanotechnology_ 15, S79–S86 (2004). Article CAS Google Scholar * Hosoki,
S., Hosaka, S. & Hasegawa, T. Surface modification of MoS2 using an STM. _Appl. Surf. Sci._ 60–61, 643–647 (1992). Article Google Scholar * Stroscio, J. A. & Eigler, D. M. Atomic
and molecular manipulation with the scanning tunneling microscope. _Science_ 254, 1319–1326 (1991). Article CAS Google Scholar * Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of
lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. _Phys. Rev. Lett._ 79, 697–700 (1997). Article CAS Google Scholar * Oyabu, N.,
Custance, O., Yi, I., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. _Phys. Rev.
Lett._ 90, 176102 (2003). Article CAS Google Scholar * Oyabu, N., Sugimoto, Y., Abe, M., Custance, O. & Morita, S. Lateral manipulation of single atoms at semiconductor surfaces using
atomic force microscopy. _Nanotechnology_ 16, S112–S117 (2005). Article CAS Google Scholar * Brihuega, I., Custance, O. & Gómez-Rodríguez, J. M. Surface diffusion of single vacancies
on Ge(111)-c(2 × 8) studied by variable temperature scanning tunneling microscopy. _Phys. Rev. B_ 70, 165410 (2004). Article CAS Google Scholar * Pizzagalli, L. & Baratoff, A. Theory
of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans. _Phys. Rev. B_ 68, 115427 (2003). Article CAS Google Scholar * Dieška,
P., Štich, I. & Pérez, R. Nanomanipulation using only mechanical energy. _Phys. Rev. Lett._ 95, 126103 (2005). Article CAS Google Scholar * Meyer, G. et al. Manipulation of atoms and
molecules with the low-temperature scanning tunneling microscope. _Jpn. J. Appl. Phys._ 40, 4409–4413 (2001). Article CAS Google Scholar * Cuberes, M. T., Schlittler, R. R. &
Gimzewski, J. K. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device. _Appl. Phys. Lett._ 69, 3016–3018 (1996). Article CAS
Google Scholar * Sugimoto, Y., Custance, O., Abe, M. & Morita, S. Site-specific force spectroscopy and atom interchange manipulation at room temperature. _e-J. Surf. Sci. Nanotech._ 4,
376–383 (2006). Article CAS Google Scholar * Sugimoto, Y., Miki, K., Abe, M. & Morita, S. Statistics of lateral atom manipulation by atomic force microscopy at room temperature.
_Phys. Rev. B_ 78, 205305 (2008). Article CAS Google Scholar * Sugimoto, Y. et al. Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force
microscopy. _Phys. Rev. Lett._ 98, 106104 (2007). Article CAS Google Scholar * Dieška, P. & Štich, I. Nanoengineering with dynamic atomic force microscopy: Lateral interchange of
adatoms on a Ge(111)-c(2 × 8) surface. _Phys. Rev. B_ 79, 125431 (2009). Article CAS Google Scholar * Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation
using atomic force microscopy. _Science_ 322, 413–417 (2008). Article CAS Google Scholar * Bammerlin, M. et al. Dynamic SFM with true atomic resolution on alkali halide surfaces. _Appl.
Phys. A_ 66, S293–S294 (1998). Article CAS Google Scholar * Reichling, M. & Barth, C. Scanning force imaging of atomic size defects on the CaF2(111) surface. _Phys. Rev. Lett._ 83,
768–771 (1999). Article CAS Google Scholar * Hölscher, H., Langkat, S. M., Schwarz, A. & Wiesendanger, R. Measurement of three dimensional force fields with atomic resolution using
dynamic force spectroscopy. _Appl. Phys. Lett._ 81, 4428–4430 (2002). Article CAS Google Scholar * Barth, C. & Henry, C. Atomic resolution imaging of the (001) surface of UHV cleaved
MgO by dynamic scanning force microscopy. _Phys. Rev. Lett._ 91, 196102 (2003). Article CAS Google Scholar * Torbrügge, S., Reichling, M., Ishiyama, A., Morita, S. & Custance, O.
Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). _Phys. Rev. Lett._ 99, 056101 (2007). Article CAS Google Scholar * Hakala, M. H., Pakarinen, O. H. & Foster, A. S.
First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces. _Phys. Rev. B_ 78, 045418 (2008). Article CAS Google Scholar * Repp, J.,
Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. _Science_ 305, 493–495 (2004). Article CAS Google Scholar * Heinrich, A. J., Gupta, J.
A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. _Science_ 306, 466–469 (2004). Article CAS Google Scholar * Hirth, S., Ostendorf, F. & Reichling, M. Lateral
manipulation of atomic size defects on the CaF2(111) surface. _Nanotechnology_ 17, S148–S154 (2006). Article CAS Google Scholar * Nishi, R., Miyagawa, D., Seino, Y., Yi, I. & Morita,
S. Non-contact atomic force microscopy study of atomic manipulation on an insulator surface by nanoindentation. _Nanotechnology_ 17, S142–S147 (2006). Article CAS Google Scholar *
Trevethan, T., Watkins, M., Kantorovich, L. N. & Shluger, A. L. Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope. _Phys. Rev. Lett._ 98,
028101 (2007). Article CAS Google Scholar * Watkins, M. B. & Shluger, A. L. Manipulation of defects on oxide surfaces via barrier reduction induced by atomic force microscope tips.
_Phys. Rev. B_ 73, 245435 (2006). Article CAS Google Scholar * Trevethan, T., Kantorovich, L., Polesel-Maris, J., Gauthier, S. & Shluger, A. Multiscale model of the manipulation of
single atoms on insulating surfaces using an atomic force microscope tip. _Phys. Rev. B_ 76, 085414 (2007). Article CAS Google Scholar * Lantz, M. A. et al. Quantitative measurement of
short-range chemical bonding forces. _Science_ 291, 2580–2583 (2001). Article CAS Google Scholar * Hoffmann, R., Kantorovich, L. N., Baratoff, A., Hug, H. J. & Güntherodt, H.-J.
Sublattice identification in scanning force microscopy on alkali halide surfaces. _Phys. Rev. Lett._ 92, 146103 (2004). Article CAS Google Scholar * Oyabu, N. et al. Single atomic contact
adhesion and dissipation in dynamic force microscopy. _Phys. Rev. Lett._ 96, 106101 (2006). Article CAS Google Scholar * Abe, M., Sugimoto, Y., Custance, O. & Morita, S.
Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. _Appl. Phys. Lett._ 87, 173503 (2005). Article CAS Google Scholar * Sugimoto, Y., Innami, S., Abe,
M., Custance, O. & Morita, S. Dynamic force spectroscopy using cantilever higher flexural modes. _Appl. Phys. Lett._ 91, 093120 (2007). Article CAS Google Scholar * Schirmeisen, A.,
Weiner, D. & Fuchs, H. Single-atom contact mechanics: From atomic scale energy barrier to mechanical relaxation hysteresis. _Phys. Rev. Lett._ 97, 136101 (2006). Article CAS Google
Scholar * Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. _Science_ 319, 1066–1069 (2008). Article CAS
Google Scholar * Albers, B. J. et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. _Nature Nanotech._ 4, 307–310 (2009). Article CAS Google Scholar
* Giessibl, F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. _Phys. Rev. B_ 56, 16010–16015 (1997). Article CAS Google Scholar * Hölscher, H. et al.
Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. _Phys. Rev. B_ 64, 075402 (2001). Article
CAS Google Scholar * Dürig, U. Extracting interaction forces and complementary observables in dynamic probe microscopy. _Appl. Phys. Lett._ 76, 1203–1205 (2000). Article Google Scholar
* Gotsmann, B., Anczykowski, B., Seidel, C. & Fuchs, H. Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. _Appl. Surf. Sci._ 140, 314–319
(1999). Article CAS Google Scholar * Giessibl, F. J. A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. _Appl. Phys.
Lett._ 78, 123–125 (2001). Article CAS Google Scholar * Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy.
_Appl. Phys. Lett._ 84, 1801–1803 (2004). Article CAS Google Scholar * Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. _Appl.
Phys. Lett._ 73, 3956–3958 (1998). Article CAS Google Scholar * Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a
quartz tuning fork. _Appl. Phys. Lett._ 76, 1470–1472 (2000). Article CAS Google Scholar * Custance, O. & Morita, S. How to move an atom. _Science_ 319, 1051–1052 (2008). Article CAS
Google Scholar * Mativetsky, J., Burke, S. A., Hoffmann, R., Sun, Y. & Grutter, P. Molecular resolution imaging of C60 on Au(111) by non-contact atomic force microscopy.
_Nanotechnology_ 15, S40–S43 (2004). Article CAS Google Scholar * Atodiresei, N., Caciuc, V., Blügel, S. & Hölscher, H. Manipulation of benzene on Cu(110) by dynamic force microscopy:
An _ab initio_ study. _Phys. Rev. B_ 77, 153408 (2008). Article CAS Google Scholar * Glatzel, T., Zimmerli, L., Koch, S., Kawai, S. & Meyer, E. Molecular assemblies grown between
metallic contacts on insulating surfaces. _Appl. Phys. Lett._ 94, 063303 (2009). Article CAS Google Scholar * Martsinovich, N. & Kantorovich, L. Modelling the manipulation of C60 on
the Si(001) surface performed with NC-AFM. _Nanotechnology_ 20, 135706 (2009). Article CAS Google Scholar * Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force
microscopy with atomic resolution. _Nature_ 446, 522–525 (2007). Article CAS Google Scholar * Lazo, C., Caciuc, V., Hölscher, H. & Heinze, S. Role of tip size, orientation, and
structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. _Phys. Rev. B_ 78, 214416 (2008). Article CAS
Google Scholar * Schmidt, R. et al. Probing the magnetic exchange forces of iron on the atomic scale. _Nano Lett._ 9, 200–204 (2009). Article CAS Google Scholar * Rugar, D., Budakian,
R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. _Nature_ 430, 329–332 (2004). Article CAS Google Scholar * Degen, C. L., Poggio, M.,
Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. _Proc. Natl Acad. Sci. USA_ 106, 1313–1317 (2009). Article CAS Google Scholar * Gross, L. et al.
Measuring the charge state of an adatom with noncontact atomic force microscopy. _Science_ 324, 1428–1431 (2009). Article CAS Google Scholar * Gross, L., Mohn, F., Moll, N., Liljeroth, P.
& Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. _Science_ 325, 1110–1114 (2009). Article CAS Google Scholar * Sugimoto, Y. et al. Chemical
identification of individual surface atoms by atomic force microscopy. _Nature_ 445, 64–67 (2007). Article CAS Google Scholar * Enevoldsen, G. H. et al. Imaging of the hydrogen subsurface
site in rutile TiO2 . _Phys. Rev. Lett._ 102, 136103 (2009). Article CAS Google Scholar * Özer, H. Ö., O'Brien, S. J. & Pethica, J. B. Local force gradients on Si(111) during
simultaneous scanning tunneling/atomic force microscopy. _Appl. Phys. Lett._ 90, 133110 (2007). Article CAS Google Scholar * Sawada, D., Sugimoto, Y., Morita, K., Abe, M. & Morita, S.
Simultaneous measurement of force and tunneling current at room temperature. _Appl. Phys. Lett._ 94, 173117 (2009). Article CAS Google Scholar * Clauss, W., Zhang, J., Bergeron, D. J.
& Johnson, A. T. Application and calibration of a quartz needle sensor for high resolution scanning force microscopy. _J. Vac. Sci. Technol. B_ 17, 1309–1312 (1999). Article CAS Google
Scholar * An, T. et al. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. _Rev. Sci. Instrum._ 79,
033703 (2008). Article CAS Google Scholar Download references ACKNOWLEDGEMENTS The authors thank M. Ternes, A. Heinrich and T. Trevethan for providing graphic material. Work supported by
Grants in Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Ministerio de Ciencia e Innovación of Spain (MICINN, projects
MAT2008–02929–NAN and MAT2008–02939–E) and by the Friction and Adhesion in Nanomechanical Systems (FANAS) Programme of the European Science Foundation under the Atomic Friction (AFRI)
project. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Ibaraki, Japan Oscar Custance * Departamento de Física
Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain Ruben Perez * Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, 565-0871, Osaka,
Japan Seizo Morita Authors * Oscar Custance View author publications You can also search for this author inPubMed Google Scholar * Ruben Perez View author publications You can also search
for this author inPubMed Google Scholar * Seizo Morita View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Oscar
Custance. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE
Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. _Nature Nanotech_ 4, 803–810 (2009). https://doi.org/10.1038/nnano.2009.347 Download
citation * Published: 06 December 2009 * Issue Date: December 2009 * DOI: https://doi.org/10.1038/nnano.2009.347 SHARE THIS ARTICLE Anyone you share the following link with will be able to
read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing
initiative