Atomic force microscopy as a tool for atom manipulation

feature-image

Play all audios:

Loading...

ABSTRACT During the past 20 years, the manipulation of atoms and molecules at surfaces has allowed the construction and characterization of model systems that could, potentially, act as


building blocks for future nanoscale devices. The majority of these experiments were performed with scanning tunnelling microscopy at cryogenic temperatures. Recently, it has been shown that


another scanning probe technique, the atomic force microscope, is capable of positioning single atoms even at room temperature. Here, we review progress in the manipulation of atoms and


molecules with the atomic force microscope, and discuss the new opportunities presented by this technique. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SCANNING PROBE MICROSCOPY Article 13 May


2021 BINARY-STATE SCANNING PROBE MICROSCOPY FOR PARALLEL IMAGING Article Open access 17 March 2022 PHOTO-INDUCED FORCE MICROSCOPY Article 29 May 2025 REFERENCES * Binnig, G., Rohrer, H.,


Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. _Phys. Rev. Lett._ 49, 57–61 (1982). Article  Google Scholar  * Eigler, D. M. & Schweizer, E. K. Positioning


single atoms with a scanning tunnelling microscope. _Nature_ 344, 524–526 (1990). Article  CAS  Google Scholar  * Lyo, I.-W. & Avouris, P. Field-induced nanometer- to atomic-scale


manipulation of silicon surfaces with the STM. _Science_ 253, 173–176 (1991). Article  CAS  Google Scholar  * Eigler, D. M., Lutz, C. P. & Rudger, W. E. An atomic switch realized with


the scanning tunnelling microscope. _Nature_ 352, 600–603 (1991). Article  CAS  Google Scholar  * Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch.


_Nature_ 433, 47–50 (2005). Article  CAS  Google Scholar  * Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. _Science_ 297,


1853–1856 (2002). Article  CAS  Google Scholar  * Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. _Science_ 302, 77–81 (2003). Article


  CAS  Google Scholar  * Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. _Science_


312, 1196–1199 (2006). Article  CAS  Google Scholar  * Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. _Science_ 323, 1193–1197


(2009). Article  CAS  Google Scholar  * Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. _Science_ 298, 1381–1387 (2002). Article  CAS  Google Scholar  *


Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. _Science_ 262, 218–220 (1993). Article  CAS  Google Scholar  * Heller, E. J.,


Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and adsorption of surface electron waves in quantum corrals. _Nature_ 369, 464–466 (1994). Article  Google Scholar  * Manoharan,


H., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. _Nature_ 403, 512–515 (2000). Article  CAS  Google Scholar  * Moon, C. R., Mattos,


L. S., Foster, B. K., Zeltzer, G. & Manoharan, H. C. Quantum holographic encoding in a two-dimensional electron gas. _Nature Nanotech._ 4, 167–172 (2009). Article  CAS  Google Scholar  *


Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. _Nature_ 442,


436–439 (2006). Article  CAS  Google Scholar  * Yamachika, R., Grobis, M., Wachowiak, A. & Crommie, M. F. Controlled atomic doping of a single C60 molecule. _Science_ 304, 281–284


(2004). Article  CAS  Google Scholar  * Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards


single molecule engineering. _Phys. Rev. Lett._ 85, 2777–2780 (2000). Article  CAS  Google Scholar  * Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled


room temperature positioning of individual molecules: Molecular flexure and motion. _Science_ 271, 181–184 (1996). Article  CAS  Google Scholar  * Gimzewski, J. K. et al. Rotation of a


single molecule within a supramolecular bearing. _Science_ 281, 531–533 (1998). Article  CAS  Google Scholar  * Stipe, B. C. & Ho, W. Inducing and viewing the rotational motion of a


single molecule. _Science_ 279, 1907–1909 (1998). Article  CAS  Google Scholar  * Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by


excitation of internal vibration mode. _Science_ 295, 2055–2058 (2002). Article  CAS  Google Scholar  * Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. Selectivity in


vibrationally mediated single-molecule chemistry. _Nature_ 423, 525–528 (2003). Article  CAS  Google Scholar  * Lee, H. J. & Ho, W. Single-bond formation and characterization with a


scanning tunneling microscope. _Science_ 286, 1719–1722 (1999). Article  CAS  Google Scholar  * Chen, W., Jamneala, T., Madhavan, V. & Crommie, M. F. Disappearance of the Kondo resonance


for atomically fabricated cobalt dimers. _Phys. Rev. B_ 60, R8529 (1999). Article  CAS  Google Scholar  * Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered


atomic structures. _Science_ 312, 1021–1023 (2006). Article  CAS  Google Scholar  * Giessibl, F. J. & Quate, C. F. Exploring the nanoworld with atomic force microscopy. _Physics Today_


59, 44–50 (2006). Article  CAS  Google Scholar  * Giessibl, F. J. Advances in atomic force microscopy. _Rev. Mod. Phys._ 75, 949–983 (2003). Article  CAS  Google Scholar  * García, R. &


Pérez, R. Dynamic atomic force microscopy methods. _Surf. Sci. Rep._ 47, 197–301 (2002). Article  Google Scholar  * Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. _Phys.


Rev. Lett._ 56, 930–933 (1986). Article  CAS  Google Scholar  * Gerber, C. & Lang, H. How the doors to the nanoworld were opened. _Nature Nanotech._ 1, 3–5 (2006). Article  CAS  Google


Scholar  * Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. _Phys. Rev. Lett._ 50, 120–123 (1983). Article  CAS  Google Scholar  *


Giessibl, F. J. Atomic resolution of the silicon(111)-(7 × 7) surface by atomic force microscopy. _Science_ 267, 68–71 (1995). Article  CAS  Google Scholar  * Sugimoto, Y. et al. Atom inlays


performed at room temperature using atomic force microscopy. _Nature Mater._ 4, 156–159 (2005). Article  CAS  Google Scholar  * Binnig, G. & Rohrer, H. In touch with atoms. _Rev. Mod.


Phys._ 71, S324 (1999). Article  CAS  Google Scholar  * Pérez, R., Payne, M., Štich, I. & Terakura, K. Role of covalent tip-surface interactions in noncontact atomic force microscopy.


_Phys. Rev. Lett._ 78, 678–681 (1997). Article  Google Scholar  * Livshits, A. I., Shluger, A. L., Rohl, A. L. & Foster, A. S. Model of noncontact scanning force microscopy on ionic


surfaces. _Phys. Rev. B_ 59, 2436–2448 (1999). Article  CAS  Google Scholar  * Dieška, P., Štich, I. & Pérez, R. Covalent and reversible short-range electrostatic imaging in noncontact


atomic force microscopy. _Phys. Rev. Lett._ 91, 216401 (2003). Article  CAS  Google Scholar  * Hölscher, H., Allers, W., Schwarz, U. D., Schwarz, A. & Wiesendanger, R. Simulation of


NC-AFM images of xenon(111). _Appl. Phys. A_ 72, S35–S38 (2001). Article  Google Scholar  * Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using


high-Q cantilevers for enhanced force microscope sensitivity. _J. Appl. Phys._ 69, 668–673 (1991). Article  Google Scholar  * Guggisberg, M. et al. Separation of interactions by noncontact


force microscopy. _Phys. Rev. B_ 61, 11151–11155 (2000). Article  CAS  Google Scholar  * Giessibl, F. J., Hembacher, S., Herz, M., Schiller, C. & Mannhart, J. Stability considerations


and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. _Nanotechnology_ 15, S79–S86 (2004). Article  CAS  Google Scholar  * Hosoki,


S., Hosaka, S. & Hasegawa, T. Surface modification of MoS2 using an STM. _Appl. Surf. Sci._ 60–61, 643–647 (1992). Article  Google Scholar  * Stroscio, J. A. & Eigler, D. M. Atomic


and molecular manipulation with the scanning tunneling microscope. _Science_ 254, 1319–1326 (1991). Article  CAS  Google Scholar  * Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of


lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. _Phys. Rev. Lett._ 79, 697–700 (1997). Article  CAS  Google Scholar  * Oyabu, N.,


Custance, O., Yi, I., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. _Phys. Rev.


Lett._ 90, 176102 (2003). Article  CAS  Google Scholar  * Oyabu, N., Sugimoto, Y., Abe, M., Custance, O. & Morita, S. Lateral manipulation of single atoms at semiconductor surfaces using


atomic force microscopy. _Nanotechnology_ 16, S112–S117 (2005). Article  CAS  Google Scholar  * Brihuega, I., Custance, O. & Gómez-Rodríguez, J. M. Surface diffusion of single vacancies


on Ge(111)-c(2 × 8) studied by variable temperature scanning tunneling microscopy. _Phys. Rev. B_ 70, 165410 (2004). Article  CAS  Google Scholar  * Pizzagalli, L. & Baratoff, A. Theory


of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans. _Phys. Rev. B_ 68, 115427 (2003). Article  CAS  Google Scholar  * Dieška,


P., Štich, I. & Pérez, R. Nanomanipulation using only mechanical energy. _Phys. Rev. Lett._ 95, 126103 (2005). Article  CAS  Google Scholar  * Meyer, G. et al. Manipulation of atoms and


molecules with the low-temperature scanning tunneling microscope. _Jpn. J. Appl. Phys._ 40, 4409–4413 (2001). Article  CAS  Google Scholar  * Cuberes, M. T., Schlittler, R. R. &


Gimzewski, J. K. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device. _Appl. Phys. Lett._ 69, 3016–3018 (1996). Article  CAS 


Google Scholar  * Sugimoto, Y., Custance, O., Abe, M. & Morita, S. Site-specific force spectroscopy and atom interchange manipulation at room temperature. _e-J. Surf. Sci. Nanotech._ 4,


376–383 (2006). Article  CAS  Google Scholar  * Sugimoto, Y., Miki, K., Abe, M. & Morita, S. Statistics of lateral atom manipulation by atomic force microscopy at room temperature.


_Phys. Rev. B_ 78, 205305 (2008). Article  CAS  Google Scholar  * Sugimoto, Y. et al. Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force


microscopy. _Phys. Rev. Lett._ 98, 106104 (2007). Article  CAS  Google Scholar  * Dieška, P. & Štich, I. Nanoengineering with dynamic atomic force microscopy: Lateral interchange of


adatoms on a Ge(111)-c(2 × 8) surface. _Phys. Rev. B_ 79, 125431 (2009). Article  CAS  Google Scholar  * Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation


using atomic force microscopy. _Science_ 322, 413–417 (2008). Article  CAS  Google Scholar  * Bammerlin, M. et al. Dynamic SFM with true atomic resolution on alkali halide surfaces. _Appl.


Phys. A_ 66, S293–S294 (1998). Article  CAS  Google Scholar  * Reichling, M. & Barth, C. Scanning force imaging of atomic size defects on the CaF2(111) surface. _Phys. Rev. Lett._ 83,


768–771 (1999). Article  CAS  Google Scholar  * Hölscher, H., Langkat, S. M., Schwarz, A. & Wiesendanger, R. Measurement of three dimensional force fields with atomic resolution using


dynamic force spectroscopy. _Appl. Phys. Lett._ 81, 4428–4430 (2002). Article  CAS  Google Scholar  * Barth, C. & Henry, C. Atomic resolution imaging of the (001) surface of UHV cleaved


MgO by dynamic scanning force microscopy. _Phys. Rev. Lett._ 91, 196102 (2003). Article  CAS  Google Scholar  * Torbrügge, S., Reichling, M., Ishiyama, A., Morita, S. & Custance, O.


Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). _Phys. Rev. Lett._ 99, 056101 (2007). Article  CAS  Google Scholar  * Hakala, M. H., Pakarinen, O. H. & Foster, A. S.


First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces. _Phys. Rev. B_ 78, 045418 (2008). Article  CAS  Google Scholar  * Repp, J.,


Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. _Science_ 305, 493–495 (2004). Article  CAS  Google Scholar  * Heinrich, A. J., Gupta, J.


A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. _Science_ 306, 466–469 (2004). Article  CAS  Google Scholar  * Hirth, S., Ostendorf, F. & Reichling, M. Lateral


manipulation of atomic size defects on the CaF2(111) surface. _Nanotechnology_ 17, S148–S154 (2006). Article  CAS  Google Scholar  * Nishi, R., Miyagawa, D., Seino, Y., Yi, I. & Morita,


S. Non-contact atomic force microscopy study of atomic manipulation on an insulator surface by nanoindentation. _Nanotechnology_ 17, S142–S147 (2006). Article  CAS  Google Scholar  *


Trevethan, T., Watkins, M., Kantorovich, L. N. & Shluger, A. L. Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope. _Phys. Rev. Lett._ 98,


028101 (2007). Article  CAS  Google Scholar  * Watkins, M. B. & Shluger, A. L. Manipulation of defects on oxide surfaces via barrier reduction induced by atomic force microscope tips.


_Phys. Rev. B_ 73, 245435 (2006). Article  CAS  Google Scholar  * Trevethan, T., Kantorovich, L., Polesel-Maris, J., Gauthier, S. & Shluger, A. Multiscale model of the manipulation of


single atoms on insulating surfaces using an atomic force microscope tip. _Phys. Rev. B_ 76, 085414 (2007). Article  CAS  Google Scholar  * Lantz, M. A. et al. Quantitative measurement of


short-range chemical bonding forces. _Science_ 291, 2580–2583 (2001). Article  CAS  Google Scholar  * Hoffmann, R., Kantorovich, L. N., Baratoff, A., Hug, H. J. & Güntherodt, H.-J.


Sublattice identification in scanning force microscopy on alkali halide surfaces. _Phys. Rev. Lett._ 92, 146103 (2004). Article  CAS  Google Scholar  * Oyabu, N. et al. Single atomic contact


adhesion and dissipation in dynamic force microscopy. _Phys. Rev. Lett._ 96, 106101 (2006). Article  CAS  Google Scholar  * Abe, M., Sugimoto, Y., Custance, O. & Morita, S.


Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. _Appl. Phys. Lett._ 87, 173503 (2005). Article  CAS  Google Scholar  * Sugimoto, Y., Innami, S., Abe,


M., Custance, O. & Morita, S. Dynamic force spectroscopy using cantilever higher flexural modes. _Appl. Phys. Lett._ 91, 093120 (2007). Article  CAS  Google Scholar  * Schirmeisen, A.,


Weiner, D. & Fuchs, H. Single-atom contact mechanics: From atomic scale energy barrier to mechanical relaxation hysteresis. _Phys. Rev. Lett._ 97, 136101 (2006). Article  CAS  Google


Scholar  * Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. _Science_ 319, 1066–1069 (2008). Article  CAS 


Google Scholar  * Albers, B. J. et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. _Nature Nanotech._ 4, 307–310 (2009). Article  CAS  Google Scholar


  * Giessibl, F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. _Phys. Rev. B_ 56, 16010–16015 (1997). Article  CAS  Google Scholar  * Hölscher, H. et al.


Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. _Phys. Rev. B_ 64, 075402 (2001). Article


  CAS  Google Scholar  * Dürig, U. Extracting interaction forces and complementary observables in dynamic probe microscopy. _Appl. Phys. Lett._ 76, 1203–1205 (2000). Article  Google Scholar


  * Gotsmann, B., Anczykowski, B., Seidel, C. & Fuchs, H. Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. _Appl. Surf. Sci._ 140, 314–319


(1999). Article  CAS  Google Scholar  * Giessibl, F. J. A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. _Appl. Phys.


Lett._ 78, 123–125 (2001). Article  CAS  Google Scholar  * Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy.


_Appl. Phys. Lett._ 84, 1801–1803 (2004). Article  CAS  Google Scholar  * Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. _Appl.


Phys. Lett._ 73, 3956–3958 (1998). Article  CAS  Google Scholar  * Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a


quartz tuning fork. _Appl. Phys. Lett._ 76, 1470–1472 (2000). Article  CAS  Google Scholar  * Custance, O. & Morita, S. How to move an atom. _Science_ 319, 1051–1052 (2008). Article  CAS


  Google Scholar  * Mativetsky, J., Burke, S. A., Hoffmann, R., Sun, Y. & Grutter, P. Molecular resolution imaging of C60 on Au(111) by non-contact atomic force microscopy.


_Nanotechnology_ 15, S40–S43 (2004). Article  CAS  Google Scholar  * Atodiresei, N., Caciuc, V., Blügel, S. & Hölscher, H. Manipulation of benzene on Cu(110) by dynamic force microscopy:


An _ab initio_ study. _Phys. Rev. B_ 77, 153408 (2008). Article  CAS  Google Scholar  * Glatzel, T., Zimmerli, L., Koch, S., Kawai, S. & Meyer, E. Molecular assemblies grown between


metallic contacts on insulating surfaces. _Appl. Phys. Lett._ 94, 063303 (2009). Article  CAS  Google Scholar  * Martsinovich, N. & Kantorovich, L. Modelling the manipulation of C60 on


the Si(001) surface performed with NC-AFM. _Nanotechnology_ 20, 135706 (2009). Article  CAS  Google Scholar  * Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force


microscopy with atomic resolution. _Nature_ 446, 522–525 (2007). Article  CAS  Google Scholar  * Lazo, C., Caciuc, V., Hölscher, H. & Heinze, S. Role of tip size, orientation, and


structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. _Phys. Rev. B_ 78, 214416 (2008). Article  CAS 


Google Scholar  * Schmidt, R. et al. Probing the magnetic exchange forces of iron on the atomic scale. _Nano Lett._ 9, 200–204 (2009). Article  CAS  Google Scholar  * Rugar, D., Budakian,


R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. _Nature_ 430, 329–332 (2004). Article  CAS  Google Scholar  * Degen, C. L., Poggio, M.,


Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. _Proc. Natl Acad. Sci. USA_ 106, 1313–1317 (2009). Article  CAS  Google Scholar  * Gross, L. et al.


Measuring the charge state of an adatom with noncontact atomic force microscopy. _Science_ 324, 1428–1431 (2009). Article  CAS  Google Scholar  * Gross, L., Mohn, F., Moll, N., Liljeroth, P.


& Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. _Science_ 325, 1110–1114 (2009). Article  CAS  Google Scholar  * Sugimoto, Y. et al. Chemical


identification of individual surface atoms by atomic force microscopy. _Nature_ 445, 64–67 (2007). Article  CAS  Google Scholar  * Enevoldsen, G. H. et al. Imaging of the hydrogen subsurface


site in rutile TiO2 . _Phys. Rev. Lett._ 102, 136103 (2009). Article  CAS  Google Scholar  * Özer, H. Ö., O'Brien, S. J. & Pethica, J. B. Local force gradients on Si(111) during


simultaneous scanning tunneling/atomic force microscopy. _Appl. Phys. Lett._ 90, 133110 (2007). Article  CAS  Google Scholar  * Sawada, D., Sugimoto, Y., Morita, K., Abe, M. & Morita, S.


Simultaneous measurement of force and tunneling current at room temperature. _Appl. Phys. Lett._ 94, 173117 (2009). Article  CAS  Google Scholar  * Clauss, W., Zhang, J., Bergeron, D. J.


& Johnson, A. T. Application and calibration of a quartz needle sensor for high resolution scanning force microscopy. _J. Vac. Sci. Technol. B_ 17, 1309–1312 (1999). Article  CAS  Google


Scholar  * An, T. et al. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. _Rev. Sci. Instrum._ 79,


033703 (2008). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank M. Ternes, A. Heinrich and T. Trevethan for providing graphic material. Work supported by


Grants in Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Ministerio de Ciencia e Innovación of Spain (MICINN, projects


MAT2008–02929–NAN and MAT2008–02939–E) and by the Friction and Adhesion in Nanomechanical Systems (FANAS) Programme of the European Science Foundation under the Atomic Friction (AFRI)


project. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Ibaraki, Japan Oscar Custance * Departamento de Física


Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain Ruben Perez * Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, 565-0871, Osaka,


Japan Seizo Morita Authors * Oscar Custance View author publications You can also search for this author inPubMed Google Scholar * Ruben Perez View author publications You can also search


for this author inPubMed Google Scholar * Seizo Morita View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Oscar


Custance. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. _Nature Nanotech_ 4, 803–810 (2009). https://doi.org/10.1038/nnano.2009.347 Download


citation * Published: 06 December 2009 * Issue Date: December 2009 * DOI: https://doi.org/10.1038/nnano.2009.347 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative