Structural and functional asymmetry of lateral heschl's gyrus reflects pitch perception preference

feature-image

Play all audios:

Loading...

ABSTRACT The relative pitch of harmonic complex sounds, such as instrumental sounds, may be perceived by decoding either the fundamental pitch (_f_0) or the spectral pitch (_f_SP) of the


stimuli. We classified a large cohort of 420 subjects including symphony orchestra musicians to be either _f_0 or _f_SP listeners, depending on the dominant perceptual mode. In a subgroup of


87 subjects, MRI (magnetic resonance imaging) and magnetoencephalography studies demonstrated a strong neural basis for both types of pitch perception irrespective of musical aptitude.


Compared with _f_0 listeners, _f_SP listeners possessed a pronounced rightward, rather than leftward, asymmetry of gray matter volume and P50m activity within the pitch-sensitive lateral


Heschl's gyrus. Our data link relative hemispheric lateralization with perceptual stimulus properties, whereas the absolute size of the Heschl's gyrus depends on musical aptitude.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS METER ENHANCES THE SUBCORTICAL PROCESSING OF SPEECH SOUNDS AT A STRONG BEAT Article Open access 29 September 2020 AUDIOVISUAL STRUCTURAL


CONNECTIVITY IN MUSICIANS AND NON-MUSICIANS: A CORTICAL THICKNESS AND DIFFUSION TENSOR IMAGING STUDY Article Open access 22 February 2021 INDIVIDUAL DIFFERENCES IN HUMAN FREQUENCY-FOLLOWING


RESPONSE PREDICT PITCH LABELING ABILITY Article Open access 12 July 2021 REFERENCES * Smoorenburg, G.F. Pitch perception of two-frequency stimuli. _J. Acoust. Soc. Am._ 48, 924–942 (1970).


Article  CAS  Google Scholar  * Laguitton, V., Demany, L., Semal, C. & Liégeois-Chauvel, C. Pitch perception: a difference between right-and left-handed listeners. _Neuropsychologia_ 36,


201–207 (1998). Article  CAS  Google Scholar  * von Helmholtz, H.L.F. _On the Sensations of Tone_ (Longmans, London, 1885). Google Scholar  * Terhardt, E. Pitch, consonance and harmony. _J.


Acoust. Soc. Am._ 55, 1061–1069 (1974). Article  CAS  Google Scholar  * Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic


resonance imaging. _J. Cogn. Neurosci._ 13, 1–7 (2001). Article  CAS  Google Scholar  * Langner, G. Periodicity coding in the auditory system. _Hear. Res._ 60, 115–142 (1992). Article  CAS 


Google Scholar  * Griffiths, T.D., Büchel, C., Frackowiak, R.S.J. & Patterson, R.D. Analysis of temporal structure in sound by the human brain. _Nat. Neurosci._ 1, 422–427 (1998).


Article  CAS  Google Scholar  * Gutschalk, A., Patterson, R.D., Rupp, A., Uppenkamp, S. & Scherg, M. Sustained magnetic fields reveal separate sites for sound level and temporal


regularity in human auditory cortex. _Neuroimage_ 15, 207–216 (2002). Article  Google Scholar  * Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex.


_Neuron_ 40, 859–869 (2003). Article  CAS  Google Scholar  * Pantev, C., Hoke, M., Lütkenhöner, B. & Lehnerz, K. Tonotopic organization of the auditory cortex: pitch versus frequency


representation. _Science_ 246, 486–488 (1989). Article  CAS  Google Scholar  * Seifritz, E. et al. Spatiotemporal pattern of neural processing in the human auditory cortex. _Science_ 297,


1706–1708 (2002). Article  CAS  Google Scholar  * Griffiths, T.D. Functional imaging of pitch analysis. _Ann. NY Acad. Sci._ 999, 40–49 (2003). Article  Google Scholar  * Janata, P. et al.


The cortical topography of tonal structures underlying western music. _Science_ 298, 2167–2170 (2002). Article  CAS  Google Scholar  * Hall, D. et al. Spectral and temporal processing in


human auditory cortex. _Cereb. Cortex_ 12, 140–149 (2002). Article  Google Scholar  * Penagos, H., Melcher, J.R. & Oxenham, A.J. A neural representation of pitch salience in nonprimary


human auditory cortex revealed with functional magnetic resonance imaging. _J. Neurosci._ 24, 6810–6815 (2004). Article  CAS  Google Scholar  * Patterson, R.D., Uppenkamp, S., Johnsrude,


I.S. & Griffiths, T.D. The processing of temporal pitch and melody information in auditory cortex. _Neuron_ 36, 767–776 (2002). Article  CAS  Google Scholar  * Warren, J.D., Uppenkamp,


S., Patterson, R. & Griffiths, T.D. Separating pitch chroma and pitch height in the human brain. _Proc. Natl. Acad. Sci. USA_ 100, 10038–10042 (2003). Article  CAS  Google Scholar  *


Johnsrude, I.S., Penhune, V.B. & Zatorre, R.J. Functional specificity in the right human auditory cortex for perceiving pitch direction. _Brain_ 123, 155–163 (2000). Article  Google


Scholar  * Warren, J.D. & Griffiths, T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. _J. Neurosci._ 23, 5799–5804 (2003).


Article  CAS  Google Scholar  * Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. Encoding of the temporal regularity of sound in the human brainstem. _Nat.


Neurosci._ 4, 633–637 (2001). Article  CAS  Google Scholar  * Tervaniemi, M. Lateralization of auditory-cortex functions. _Brain Res. Brain Res. Rev._ 43, 231–246 (2003). Article  Google


Scholar  * Devlin, J.T. et al. Functional asymmetry for auditory processing in human primary auditory cortex. _J. Neurosci._ 23, 11516–11522 (2003). Article  CAS  Google Scholar  * Zatorre,


R. & Belin, P. Spectral and temporal processing in human auditory cortex. _Cereb. Cortex_ 11, 946–953 (2001). Article  CAS  Google Scholar  * Zatorre, R.J., Belin, P. & Penhune, V.


Structure and function of auditory cortex: music and speech. _Trends Cogn. Sci._ 6, 37–46 (2002). Article  Google Scholar  * Boemio, A., Fromm, S. & Poeppel, D. Hierarchical and


asymmetric temporal sensitivity in human auditory cortices. _Nat. Neurosci._ 8, 389–395 (2005). Article  CAS  Google Scholar  * Galuske, R.A., Schlote, W., Bratzke, H. & Singer, W.


Interhemispheric asymmetries of the modular structure in human temporal cortex. _Science_ 289, 1946–1949 (2000). Article  CAS  Google Scholar  * Schneider, P. et al. Morphology of


Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. _Nat. Neurosci._ 5, 688–694 (2002). Article  CAS  Google Scholar  * Sluming, V. et al. Voxel-based


morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. _Neuroimage_ 17, 1613–1622 (2002). Article  Google Scholar  * Rademacher, J. et


al. Probabilistic mapping and volume measurement of human primary auditory cortex. _Neuroimage_ 13, 669–683 (2001). Article  CAS  Google Scholar  * Morosan, P. et al. Human primary auditory


cortex: cytoachitectonic subdivisions and mapping into a spatial reference system. _Neuroimage_ 13, 684–701 (2001). Article  CAS  Google Scholar  * Penhune, V.B., Zatorre, R.J., MacDonald,


J.D. & Evans, A.C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. _Cereb. Cortex_


6, 661–672 (1996). Article  CAS  Google Scholar  * Leonard, C.M., Puranik, C., Kuldau, J.M. & Lombardino, L.J. 1998. Normal variation in the frequency and location of human auditory


cortex. Heschl's gyrus: where is it? _Cereb. Cortex_ 8, 397–406 (1998). Article  CAS  Google Scholar  * Pantev, C. et al. Increased auditory cortical representation in musicians.


_Nature_ 392, 811–813 (1998). Article  CAS  Google Scholar  * Talairach, J. & Tournoux, P. _Co-planar Stereotaxic Atlas of the Human Brain_ (Thieme, New York, 1988). Google Scholar  *


Westbury, C.F., Zatorre, R.J. & Evans, A.C. Quantifying variability in the planum temporale: a probability map. _Cereb. Cortex_ 9, 392–405 (1999). Article  CAS  Google Scholar  * Ritter,


S., Dosch, H.G., Specht, H.J. & Rupp, A. Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. _Neuroimage_ (in the press). * Penhune, V.B., Cismaru, R.,


Dorsaint-Pierre, R., Petitto, L. & Zatorre, R. The morphometry of auditory cortex in the congenitally deaf measured using MRI. _Neuroimage_ 20, 1215–1225 (2003). Article  Google Scholar


  * Galaburda, A. & Sanides, F. Cytoarchitectonic organization of the human auditory cortex. _J. Comp. Neurol._ 190, 597–610 (1980). Article  CAS  Google Scholar  * Wallace, M.N.,


Johnston, P.W. & Palmer, A.R. Histochemical identification of cortical areas in the auditory region of the human brain. _Exp. Brain Res._ 143, 499–508 (2002). Article  CAS  Google


Scholar  * Pfeifer, R.A. Pathologie der Hörstrahlung und der corticalen Hörsphäre. in _Handbuch der Neurologie_ Vol. 6 (eds. Bumke, O. & Förster, O.) 533–626 (Springer, Berlin, 1936).


Google Scholar  * Gordon, E.E. _Introduction to Research and the Psychology of Music_ (GIA, Chicago, 1998). Google Scholar  * Plomp, R. _Aspects of Tone Sensation_ (Academic, London, 1976).


Google Scholar  * Meyer, A. The search for a morphological substrate in the brains of eminent persons including musicians: a historical review. in _Music and the Brain_ (eds. Critchley, M.


& Henson, R.A.) 255–281. (Heinemann, London, 1977). Chapter  Google Scholar  * Rupp, A., Gutschalk, A., Uppenkamp, S. & Scherg, M. Middle latency auditory-evoked fields reflect


psychoacoustic gap detection thresholds in human listeners. _J. Neurophysiol._ 92, 2239–2247 (2004). Article  Google Scholar  * Galaburda, A.M., Le May, M. & Kemper, T.L. Right-left


asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance. _Science_ 199, 852–856 (1978). Article  CAS  Google Scholar  * Schlaug, G., Jäncke,


L., Huang, Y. & Steinmetz, H. _In vivo_ evidence of structural brain asymmetry in musicians. _Science_ 267, 699–701 (1995). Article  CAS  Google Scholar  * Münte, T.F., Kohlmetz, C.,


Nager, W. & Altenmüller, E. Superior auditory spatial tuning in conductors. _Nature_ 409, 580 (2001). Article  Google Scholar  * Gaser, C. & Schlaug, G. Brain structures differ


between musicians and non-musicians. _J. Neurosci._ 23, 9240–9245 (2003). Article  CAS  Google Scholar  * Joliveau, E., Smith, J. & Wolfe, J. Tuning of vocal tract resonance by sopranos.


_Nature_ 427, 116 (2004). Article  CAS  Google Scholar  * Belin, P., Zatorre, R.J. & Lafaille, P. Voice-selective areas in human auditory cortex. _Nature_ 403, 309–312 (2000). Article 


CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank K. Sartor for providing the 3D-MRI in Heidelberg, the radiographic staff at MARIARC for assistance with MRI data


acquisition in Liverpool and E. Hofmann (Music Academy, Basel); D. Geller, R. Schmitt and T. van der Geld (University of Music and Performing Arts, Mannheim); C. Klein (Institute of Music


Pedagogy, Halle) and D. Schmidt (Conservatory of Music and Performing Arts, Stuttgart) for assistance with collecting the psychometric data. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Neurology, University Hospital Heidelberg, INF 400, Heidelberg, D-69120, Germany Peter Schneider, Michael Scherg, Christoph Stippich & André Rupp * Division of Medical


Imaging, School of Health Sciences, University of Liverpool, Johnston Building, The Quadrangle Brownlow Hill, Liverpool, L69 3GB, UK Vanessa Sluming * Magnetic Resonance and Image Analysis


Research Centre (MARIARC), University of Liverpool, Pembroke Place, PO Box 147, Liverpool, L69 3BX, UK Vanessa Sluming & Neil Roberts * Department of Cognitive Neuroscience, Faculty of


Psychology, Universiteit Maastricht, Postbus 616, Maastricht, 6200MD, The Netherlands Rainer Goebel * Department of Physics, University of Heidelberg, Philosophenweg 12, Heidelberg, D-69120,


Germany Hans J Specht & H Günter Dosch * Institute of Sound and Vibration Research, University of Southampton, University Road Highfield, Southampton, S017 1BJ, UK Stefan Bleeck Authors


* Peter Schneider View author publications You can also search for this author inPubMed Google Scholar * Vanessa Sluming View author publications You can also search for this author


inPubMed Google Scholar * Neil Roberts View author publications You can also search for this author inPubMed Google Scholar * Michael Scherg View author publications You can also search for


this author inPubMed Google Scholar * Rainer Goebel View author publications You can also search for this author inPubMed Google Scholar * Hans J Specht View author publications You can also


search for this author inPubMed Google Scholar * H Günter Dosch View author publications You can also search for this author inPubMed Google Scholar * Stefan Bleeck View author publications


You can also search for this author inPubMed Google Scholar * Christoph Stippich View author publications You can also search for this author inPubMed Google Scholar * André Rupp View


author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Peter Schneider. ETHICS DECLARATIONS COMPETING INTERESTS The authors


declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Schneider, P., Sluming, V., Roberts, N. _et al._ Structural and


functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. _Nat Neurosci_ 8, 1241–1247 (2005). https://doi.org/10.1038/nn1530 Download citation * Received: 15


April 2005 * Accepted: 28 July 2005 * Published: 21 August 2005 * Issue Date: 01 September 2005 * DOI: https://doi.org/10.1038/nn1530 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative