Modulation of glycine-activated ion channel function by g-protein βγ subunits

feature-image

Play all audios:

Loading...

ABSTRACT Glycine receptors (GlyRs), together with GABAA and nicotinic acetylcholine (ACh) receptors, form part of the ligand-activated ion channel superfamily and regulate the excitability


of the mammalian brain stem and spinal cord. Here we report that the ability of the neurotransmitter glycine to gate recombinant and native ionotropic GlyRs is modulated by the G protein βγ


dimer (Gβγ). We found that the amplitude of the glycine-activated Cl− current was enhanced after application of purified Gβγ or after activation of a G protein–coupled receptor.


Overexpression of three distinct G protein α subunits (Gα), as well as the Gβγ scavenger peptide ct-GRK2, significantly blunted the effect of G protein activation. Single-channel recordings


from isolated membrane patches showed that Gβγ increased the GlyR open probability (_nP_o). Our results indicate that this interaction of Gβγ with GlyRs regulates both motor and sensory


functions in the central nervous system. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant


access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions *


Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CONFORMATIONAL TRANSITIONS AND ALLOSTERIC MODULATION IN A HETEROMERIC GLYCINE RECEPTOR Article Open access 13


March 2023 MOLECULAR MECHANISM OF LIGAND GATING AND OPENING OF NMDA RECEPTOR Article 31 July 2024 GLUA2-CONTAINING AMPA RECEPTORS FORM A CONTINUUM OF CA2+-PERMEABLE CHANNELS Article 19 March


2025 REFERENCES * Betz, H. Glycine receptors: heterogeneous and widespread in the mammalian brain. _Trends Neurosci._ 14, 458–461 (1991). Article  CAS  Google Scholar  * Legendre, P. The


glycinergic inhibitory synapse. _Cell. Mol. Life Sci._ 58, 760–793 (2001). Article  CAS  Google Scholar  * Schmid, K., Bohmer, G. & Gebauer, K. Glycine receptor-mediated fast synaptic


inhibition in the brainstem respiratory system. _Respir. Physiol._ 84, 351–361 (1991). Article  CAS  Google Scholar  * Harris, R.A. Ethanol actions on multiple ion channels: which are


important? _Alcohol: Clin. Exp. Res._ 23, 1563–1570 (1999). CAS  Google Scholar  * Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors.


_Nature_ 389, 385–389 (1997). Article  CAS  Google Scholar  * Song, Y. & Huang, L.Y. Modulation of glycine receptor chloride channels by cAMP dependent protein kinase in spinal


trigeminal neurons. _Nature_ 348, 242–245 (1990). Article  CAS  Google Scholar  * Vaello, M.L., Ruiz-Gomez, A., Lerma, J. & Mayor, F. Modulation of inhibitory glycine receptors by


phosphorylation by protein kinase C and cAMP-dependent protein kinase. _J. Biol. Chem._ 269, 2002–2008 (1994). CAS  PubMed  Google Scholar  * Ahmadi, S., Lippross, S., Neuhuber, W.L. &


Zeilhofer, H.U. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. _Nat. Neurosci._ 5, 34–40 (2002). Article  CAS  Google Scholar  *


Gilman, A.G. Nobel Lecture: G proteins and regulation of adenylyl cyclase. _Biosci. Rep._ 15, 65–97 (1995). Article  CAS  Google Scholar  * Hamm, H.E. The many faces of G protein signaling.


_J. Biol. Chem._ 273, 669–672 (1998). Article  CAS  Google Scholar  * Clapham, D.E. & Neer, E.J. G protein βγ subunits. _Annu. Rev. Pharmacol. Toxicol._ 37, 167–203 (1997). Article  CAS


  Google Scholar  * Ikeda, S.R. & Dunlap, K. Voltage-dependent modulation of N-type calcium channels: Role of G protein subunits. _Adv. Second Messenger Phosphoprotein Res._ 33, 131–151


(1999). Article  CAS  Google Scholar  * Dolphin, A.C. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. _J. Physiol._ 506, 3–11 (1998). Article  CAS  Google


Scholar  * Mark, M.D. & Herlitze, S. G-protein mediated gating of inward-rectifier K+ channels. _Eur. J. Biochem._ 267, 5830–5836 (2000). Article  CAS  Google Scholar  * De Ward, M. et


al. Direct binding of G-protein βγ complex to voltage-dependent calcium channels. _Nature_ 385, 446–450 (1997). Article  Google Scholar  * Canti, C., Page, K.M., Stephens, G.J. &


Dolphin, A.C. Identification of residues in the N terminus of alpha1B critical for inhibition of the voltage-dependent calcium channel by Gβγ. _J. Neurosci._ 19, 6855–6864 (1999). Article 


CAS  Google Scholar  * Krapivinsky, G., Krapivinsky, L., Wickman, K. & Clapham, D.E. Gβγ binds directly to the G protein-gated K+ channel, IKACh . _J. Biol. Chem._ 270, 29059–29062


(1995). Article  CAS  Google Scholar  * Ruegg, U.T. & Burgess, G.M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. _Trends Pharmacol. Sci._ 10,


218–220 (1989). Article  CAS  Google Scholar  * Jeong, S.W. & Ikeda, S.R. Sequestration of G-protein βγ subunits by different G-protein α subunits blocks voltage-dependent modulation of


Ca2+ channels in rat sympathetic neurons. _J. Neurosci._ 19, 4755–4761 (1999). Article  CAS  Google Scholar  * Daaka, Y. et al. Receptor and Gβγ isoform-specific interactions with G


protein-coupled receptor kinases. _Proc. Natl. Acad. Sci. USA_ 94, 2180–2185 (1997). Article  CAS  Google Scholar  * Blackmer, T. et al. G protein βγ subunit-mediated presynaptic inhibition:


regulation of exocytotic fusion downstream of Ca2+ entry. _Science_ 292, 293–297 (2001). Article  CAS  Google Scholar  * Kammermeier, P.J. & Ikeda, S.R. Expression of RGS2 alters the


coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. _Neuron_ 22, 819–829 (1999). Article  CAS  Google Scholar  * Diverse-Pierluissi, M. et al. Selective


coupling of G protein βγ complexes to inhibition of Ca2+ channels. _J. Biol. Chem._ 275, 28380–28385 (2000). Article  CAS  Google Scholar  * Hille, B. Modulation of ion-channel function by


G-protein-coupled receptors. _Trends Neurosci._ 17, 531–536 (1994). Article  CAS  Google Scholar  * Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. & Clapham, D.E. The beta gamma


subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. _Nature_ 28, 321–326 (1987). Article  Google Scholar  * Wickman, K.D. et al. Recombinant G-protein βγ-subunits


activate the muscarinic-gated atrial potassium channel. _Nature_ 368, 255–257 (1994). Article  CAS  Google Scholar  * Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G.


Openings of the rat recombinant α1 homomeric glycine receptor as a function of the number of agonist molecules bound. _J. Gen. Physiol._ 119, 443–466 (2002). Article  CAS  Google Scholar  *


Ruiz-Velasco, V. & Ikeda, S.R. Multiple G-protein βγ combinations produce voltage-dependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons. _J.


Neurosci._ 20, 2183–2191 (2000). Article  CAS  Google Scholar  * Ruiz-Velasco, V. & Ikeda, S.R. Functional expression and FRET analysis of green fluorescent proteins fused to G-protein


subunits in rat sympathetic neurons. _J. Physiol._ 537, 679–692 (2001). Article  CAS  Google Scholar  * Couve, A., Moss, S.J. & Pangalos, M.N. GABAB receptors: a new paradigm in


G-protein signaling. _Mol. Cell. Neurosci._ 16, 296–312 (2000). Article  CAS  Google Scholar  * Luscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. & Nicoll, R.A. G protein-coupled


inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. _Neuron_ 19, 687–695 (1997). Article  CAS  Google Scholar  *


Sawynok, J. GABAergic mechanisms in antinociception. _Prog. Neuropsychopharmacol. Biol. Psychiatry_ 8, 581–586 (1984). Article  CAS  Google Scholar  * Hwang, A.S. & Wilcox, G.L.


Baclofen, γ-aminobutyric acidB receptors and substance P in the mouse spinal cord. _J. Pharmacol. Exp. Ther._ 248, 1026–1033 (1989). CAS  PubMed  Google Scholar  * Kangrga, I., Jiang, M.C.


& Randic, M. Actions of (–)-baclofen on rat dorsal horn neurons. _Brain Res._ 562, 265–275 (1991). Article  CAS  Google Scholar  * Towers, S. et al. GABAB receptor protein and mRNA


distribution in rat spinal cord and dorsal root ganglia. _Eur. J. Neurosci._ 12, 3201–3210 (2000). Article  CAS  Google Scholar  * Scanziani, M. GABA spillover activates postsynaptic GABAB


receptors to control rhythmic hippocampal activity. _Neuron_ 25, 673–681 (2000). Article  CAS  Google Scholar  * Jonas, P., Bischofberger, J. & Sandkuhler, J. Corelease of two fast


neurotransmitters at a central synapse. _Science_ 281, 419–424 (1998). Article  CAS  Google Scholar  * Hille, B. _Ion Channels of Excitable Membranes_ (Sinauer, Sunderland, Massachusetts,


2001). Google Scholar  * Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure- activity relationships for agonists and of the effects of mutating receptors.


_Br. J. Pharmacol._ 125, 924–947 (1998). Article  CAS  Google Scholar  * Rogers, C.J., Twyman, R.E. & Macdonald, R.L. Benzodiazepine and beta-carboline regulation of single GABAA


receptor channels of mouse spinal neurones in culture. _J. Physiol._ 475, 69–82 (1994). Article  CAS  Google Scholar  * Bean, B.P. Neurotransmitter inhibition of neuronal calcium currents by


changes in voltage dependence. _Nature_ 340, 153–156 (1989). Article  CAS  Google Scholar  * Kneussel, M. & Betz, H. Clustering of inhibitory neurotransmitter receptors at developing


postsynaptic sites: the membrane activation model. _Trends Neurosci._ 23, 429–435 (2000). Article  CAS  Google Scholar  * Tapia, J.C. et al. Early expression of glycine and GABAA receptors


in developing spinal cord neurons. Effects on neurite outgrowth. _Neuroscience_ 108, 493–506 (2001). Article  CAS  Google Scholar  * van Zundert, B. et al. Glycine receptors involved in


synaptic transmission are selectively regulated by the cytoskeleton in mouse spinal neurons. _J. Neurophysiol._ 87, 640–644 (2002). Article  CAS  Google Scholar  * Geiman, E.J., Zheng, W.,


Fritschy, J.M. & Alvarez, F.J. Glycine and GABAA receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. _J. Comp.


Neurol._ 444, 275–289 (2002). Article  CAS  Google Scholar  * Asano, T., Morishita, R., Ueda, H. & Kato, K. Selective association of G protein β4 with γ5 and γ12 subunits in bovine


tissues. _J. Biol. Chem._ 274, 21425–21429 (1999). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank S.R. Ikeda and N.L. Harrison for the plasmids, S.R. Ikeda for


critically reading the manuscript, and L.J. Aguayo, A. Ghazanfari and J.T. Healey for technical assistance. This work was supported by Fondecyt, GIA-DIUC (L.G.A. and J.O.), and by the


National Institute on Alcohol Abuse and Alcoholism intramural program (R.W.P.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Physiology, Laboratory of Neurophysiology, Box


160-C, University of Concepción, Chile Gonzalo E Yevenes, Juan C Tapia, Jorge Parodi & Luis G Aguayo * Unit on Cellular Neuropharmacology, Laboratory of Molecular and Cellular


Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Park 5 Building., Room. 150, 12420 Parklawn Dr., Bethesda, 20892-8115, Maryland, USA Robert W


Peoples * Department of Molecular Biology, Laboratory of Molecular Genetics, Box 160-C, University of Concepción, Chile Ximena Soto & Juan Olate Authors * Gonzalo E Yevenes View author


publications You can also search for this author inPubMed Google Scholar * Robert W Peoples View author publications You can also search for this author inPubMed Google Scholar * Juan C


Tapia View author publications You can also search for this author inPubMed Google Scholar * Jorge Parodi View author publications You can also search for this author inPubMed Google Scholar


* Ximena Soto View author publications You can also search for this author inPubMed Google Scholar * Juan Olate View author publications You can also search for this author inPubMed Google


Scholar * Luis G Aguayo View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Luis G Aguayo. ETHICS DECLARATIONS


COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Yevenes, G., Peoples, R.,


Tapia, J. _et al._ Modulation of glycine-activated ion channel function by G-protein βγ subunits. _Nat Neurosci_ 6, 819–824 (2003). https://doi.org/10.1038/nn1095 Download citation *


Received: 29 April 2003 * Accepted: 23 May 2003 * Published: 13 July 2003 * Issue Date: 01 August 2003 * DOI: https://doi.org/10.1038/nn1095 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative