Genetically engineered mouse models of neurodegenerative diseases

feature-image

Play all audios:

Loading...

ABSTRACT Recent research has significantly advanced our understanding of the molecular mechanisms of neurodegenerative diseases, including Alzheimer's disease (AD) and motor neuron


disease. Here we emphasize the use of genetically engineered mouse models that are instrumental for understanding why AD is a neuronal disease, and for validating attractive therapeutic


targets. In motor neuron diseases, Cu/Zn superoxide dismutase and survival motor neuron mouse models are useful in testing disease mechanisms and therapeutic strategies for amyotrophic


lateral sclerosis (ALS) and spinal motor atrophy, respectively, but the mechanisms that account for selective motor neuron loss remain uncertain. We anticipate that, in the future, therapies


based on understanding disease mechanisms will be identified and tested in mouse model systems. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SELECTIVE NEURONAL DEGENERATION IN MATR3 S85C


KNOCK-IN MOUSE MODEL OF EARLY-STAGE ALS Article Open access 20 October 2020 EXTENSIVE PHENOTYPIC CHARACTERISATION OF A HUMAN TDP-43Q331K TRANSGENIC MOUSE MODEL OF AMYOTROPHIC LATERAL


SCLEROSIS (ALS) Article Open access 17 August 2021 DOPAMINERGIC NEURON LOSS IN MICE DUE TO INCREASED LEVELS OF WILD-TYPE HUMAN Α-SYNUCLEIN ONLY TAKES PLACE UNDER CONDITIONS OF ACCELERATED


AGING Article Open access 30 January 2024 REFERENCES * Price, D.L., Tanzi, R.E., Borchelt, D.R. & Sisodia, S.S. Alzheimer's disease: genetic studies and transgenic models. _Annu.


Rev. Genet._ 32, 461–493 (1998). CAS  PubMed  Google Scholar  * Lee, V.M.Y. & Trojanowski, J.Q. Neurodegenerative taupathies: human disease and transgenic mouse models. _Neuron_ 24,


507–510 (1999). CAS  PubMed  Google Scholar  * Lin, X., Cummings, C.J. & Zoghbi, H.Y. Expanding our understanding of polyglutamine diseases through mouse models. _Neuron_ 24, 499–502


(1999). CAS  PubMed  Google Scholar  * Dunnett, S.B. & Bjorklund, A. Prospects for new restorative and neuroprotective treatments in Parkinson's Disease. _Nature_ 399, A32–A39


(1999). CAS  PubMed  Google Scholar  * Yamamoto, A., Lucas, J.J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. _Cell_


101, 57–66 (2000). CAS  PubMed  Google Scholar  * Hardy, J. & Gwinn-Hardy, K. Genetic classification of primary neurodegenerative disease. _Science_ 282, 1075–1079 (1998). CAS  PubMed 


Google Scholar  * Selkoe, D.J. Alzheimer's disease: genes, proteins and therapy. _Physiol. Rev._ 81, 741–766 (2001). CAS  PubMed  Google Scholar  * Price, D.L., Sisodia, S.S. &


Borchelt, D.R. Genetic neurodegenerative diseases: the human illness and transgenic models. _Science_ 282, 1079–1083 (1998). CAS  PubMed  Google Scholar  * Schilling, G. et al. Intranuclear


inclusions and neuritic pathology in transgenic mice expressing a mutant N-terminal fragment of huntingtin. _Hum. Mol. Genet._ 8, 397–407 (1999). CAS  PubMed  Google Scholar  * Goedert, M.,


Spillantini, M.G. & Davies, S.W. Filamentous nerve cell inclusions in neurodegenerative diseases. _Curr. Opin. Neurobiol._ 8, 619–632 (1998). CAS  PubMed  Google Scholar  * Zoghbi, H.Y.


& Orr, H.T. Polyglutamine diseases: protein cleavage and aggregation. _Curr. Opin. Neurobiol._ 9, 566–570 (1999). CAS  PubMed  Google Scholar  * Albert, M.S. & Drachman, D.A.


Alzheimer's disease. What is it, how many people have it, and why do we need to know? _Neurology_ 55, 166–168 (2000). CAS  PubMed  Google Scholar  * Mesulam, M.M. Neuroplasticity


failure in Alzheimer's disease: bridging the gape between plaques and tangles. _Neuron_ 24, 521–529 (1999). CAS  PubMed  Google Scholar  * Price, D.L. & Sisodia, S.S. Mutant genes


in familial Alzheimer's disease and transgenic models. _Annu. Rev. Neurosci._ 21, 479–505 (1998). CAS  PubMed  Google Scholar  * Beach, T.G. et al. The cholinergic deficit coincides


with Aβ deposition at the earliest histopathologic stages of Alzheimer disease. _J. Neuropathol. Exp. Neurol._ 59, 308–313 (2000). CAS  PubMed  Google Scholar  * Serpell, L.C., Blake, C.C.F.


& Fraser, P.E. Molecular structure of a fibrillar Alzheimer's Aβ fragment. _Biochemistry_ 39, 13269–13275 (2000). CAS  PubMed  Google Scholar  * Lansbury, P.T. Jr. Evolution of


amyloid: what normal protein folding may tell us about fibrillogenesis and disease. _Proc. Natl. Acad. Sci. USA_ 96, 3342–3344 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Tanzi,


R.E. New frontiers in Alzheimer's disease genetics. _Neuron_ 32, 181–184 (2001). CAS  PubMed  Google Scholar  * Selkoe, D.J. Clearing the brain's amyloid cobwebs. _Neuron_ 32,


177–180 (2001). CAS  PubMed  Google Scholar  * Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. _Nature_ 402, 537–540 (1999). CAS  PubMed


  Google Scholar  * Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. _Mol. Cell. Neurosci._ 14, 419–427 (1999). CAS  PubMed  Google Scholar  * Lin, X.


et al. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. _Proc. Natl. Acad. Sci. USA_ 97, 1456–1460 (2000). CAS  PubMed  PubMed Central  Google


Scholar  * Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. _Nature_ 402, 533–537 (1999). CAS  PubMed  Google Scholar  * Vassar, R. et


al. β-secretase cleavage of Alzheimer's amyloid precusor protein by the transmembrane aspartic protease BACE. _Science_ 286, 735–741 (1999). CAS  PubMed  Google Scholar  * Wong, P.C.,


Price, D.L. & Cai, H. The brain's susceptibility to amyloid plaques. _Science_ 293, 1434–1435 (2001). CAS  PubMed  Google Scholar  * Farzan, M., Schnitzler, C.E., Vasilieva, N.,


Leung, D. & Choe, H. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. _Proc. Natl. Acad. Sci. USA_ 97, 9712–9717


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation.


_Nat. Neurosci._ 4, 887–893 (2001). CAS  PubMed  Google Scholar  * Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.


_Nature_ 375, 754–760 (1995). CAS  PubMed  Google Scholar  * Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. _Science_ 269, 973–977 (1995).


CAS  PubMed  Google Scholar  * Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease


type 3 gene. _Nature_ 376, 775–778 (1995). CAS  PubMed  Google Scholar  * Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives _in vivo_. _Neuron_


17, 181–190 (1996). CAS  PubMed  Google Scholar  * Sisodia, S.S. & George-Hyslop, P.H. gamma-secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? _Nat.


Rev. Neurosci._ 3, 281–290 (2002). CAS  PubMed  Google Scholar  * Esler, W.P. & Wolfe, M.S. A portrait of Alzheimer secretases—new features and familiar faces. _Science_ 293, 1449–1454


(2001). CAS  PubMed  Google Scholar  * Vassar, R. & Citron, M. Aβ-generating enzymes: recent advances in β- and γ-secretase research. _Neuron_ 27, 419–422 (2000). CAS  PubMed  Google


Scholar  * De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. _Nature_ 391, 387–390 (1998). CAS  PubMed  Google Scholar  * Wolfe,


M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and secretase activity. _Nature_ 398, 513–517 (1999). CAS  PubMed  Google Scholar  * Kopan,


R. & Goate, A. Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of notch signaling and presenilin localization. _Neuron_ 33, 321–324 (2002). CAS  PubMed  Google


Scholar  * Calhoun, M.E. et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. _Proc. Natl. Acad. Sci. USA_ 96,


14088–14093 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Chen, G. et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease.


_Nature_ 408, 975–979 (2000). CAS  PubMed  Google Scholar  * Mucke, L. et al. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice:


synaptotoxicity without plaque formation. _J. Neurosci._ 20, 4050–4058 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Hsia, A.Y. et al. Plaque-independent disruption of neural


circuits in Alzheimer's disease mouse models. _Proc. Natl. Acad. Sci. USA_ 96, 3228–3233 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Lewis, J. et al. Enhanced neurofibrillary


degeneration in transgenic mice expressing mutant tau and APP. _Science_ 293, 1487–1491 (2001). CAS  PubMed  Google Scholar  * Götz, J., Chen, F., Barmettler, R. & Nitsch, R.M. Tau


filament formation in transgenic mice expressing P301L tau. _J. Biol. Chem._ 276, 529–534 (2001). PubMed  Google Scholar  * Borchelt, D.R. et al. Accelerated amyloid deposition in the brains


of transgenic mice co-expressing mutant presenilin 1 and amyloid precursor proteins. _Neuron_ 19, 939–945 (1997). CAS  PubMed  Google Scholar  * Zheng, H. et al. β-amyloid precursor


protein-deficient mice show reactive gliosis and decreased locomotor activity. _Cell_ 81, 525–531 (1995). CAS  PubMed  Google Scholar  * Heber, S. et al. Mice with combined gene knock-outs


reveal essential and partially redundant functions of amyloid precursor protein family members. _J. Neurosci._ 20, 7951–7963 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Struhl, G.


& Greenwald, I. Presenilin is required for activity and nuclear access of notch in _drosophila_. _Nature_ 398, 522–525 (1999). CAS  PubMed  Google Scholar  * Wong, P.C. et al.


Presenilin 1 is required for _Notch1_ and _Dll1_ expression in the paraxial mesoderm. _Nature_ 387, 288–292 (1997). Article  CAS  PubMed  Google Scholar  * Donoviel, D. et al. Mice lacking


both presenilin genes exhibit early embryonic patterning defects. _Genes Dev._ 13, 2801–2810 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yu, H. et al. APP processing and


synaptic plasticity in _presenilin-1_ conditional knockout mice. _Neuron_ 31, 713–726 (2001). CAS  PubMed  Google Scholar  * Feng, R. et al. Deficient neurogenesis in forebrain-specific


_presenilin-1_ knockout mice is associated with reduced clearance of hippocampal memory traces. _Neuron_ 32, 911–926 (2001). CAS  PubMed  Google Scholar  * Cai, H. et al. BACE1 is the major


β-secretase for generation of Aβ peptides by neurons. _Nat. Neurosci._ 4, 233–234 (2001). CAS  PubMed  Google Scholar  * Luo, Y. et al. Mice deficient in BACE1, the Alzheimer's


β-secretase, have normal phenotype and abolished β-amyloid generation. _Nature_ 4, 231–232 (2001). CAS  Google Scholar  * Roberds, S.L. et al. BACE knockout mice are healthy despite lacking


the primary β-secretase activity in brain: implication for Alzheimer's disease therapeutics. _Hum. Mol. Genet._ 10, 1317–1324 (2001). CAS  PubMed  Google Scholar  * Bodendorf, U.,


Fischer, F., Bodian, D., Multhaup, G. & Paganetti, P. A splice variant of β-secretase deficient in the amyloidogenic processing of the amyloid precursor protein. _J. Biol. Chem._ 276,


12019–12023 (2001). CAS  PubMed  Google Scholar  * Li, Y.M. et al. Photoactivated γ-secretase inhibitors directed to the active site convalently label presenilin 1. _Nature_ 405, 689–693


(2000). CAS  PubMed  Google Scholar  * Huppert, S.S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch 1. _Nature_ 405, 966–970 (2000). CAS  PubMed 


Google Scholar  * Petit, A. et al. New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch clevage. _Nat. Cell Biol._ 3, 507–511 (2001). CAS 


PubMed  Google Scholar  * Hadland, B.K. et al. γ-secretase inhibitors repress thymocyte development. _Proc. Natl. Acad. Sci. USA_ 98, 7487–7491 (2001). CAS  PubMed  PubMed Central  Google


Scholar  * Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer's disease.


_Nat. Med._ 6, 916–919 (2000). CAS  PubMed  Google Scholar  * Schenk, D. et al. Immunization with amyloid attenuates Alzheimer-disease-like pathology in the PDAPP mouse. _Nature_ 400,


173–177 (1999). CAS  PubMed  Google Scholar  * DeMattos, R.B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of


Alzheimer's disease. _Proc. Natl. Acad. Sci. USA_ 98, 8850–8855 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Janus, C. et al. Aβ peptide immunization reduces behavioural


impairment and plaques in a model of Alzheimer's disease. _Nature_ 408, 979–982 (2000). CAS  PubMed  Google Scholar  * Morgan, D. et al. A β peptide vaccination prevents memory loss in


an animal model of Alzheimer's disease. _Nature_ 408, 982–985 (2000). CAS  PubMed  Google Scholar  * Ince, P.G. in _Amyotrophic Lateral Sclerosis_ (eds. Brown, R. H. Jr., Meininger, V.


& Swash, M.) 83–112 (Martin Dunitz, London, 2000). Google Scholar  * Martin, L.J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell


death mechanism. _J. Neuropathol. Exp. Neurol._ 58, 459–471 (1999). CAS  PubMed  Google Scholar  * Andersen, P.M., Morita, M. & Brown, R.H. Jr. in _Amyotrophic Lateral Sclerosis_ (eds.


Brown, R. H. Jr., Meininger, V. & Swash, M.) 223–250 (Martin Dunitz, London, 2000). Google Scholar  * Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering


selective motor neurons death in ALS. _Nature_ 2, 806–819 (2001). CAS  Google Scholar  * Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic


lateral sclerosis 2. _Nat. Genet._ 29, 166–173 (2001). CAS  PubMed  Google Scholar  * Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor


domains, is mutated in a form of recessive amyotrophic lateral sclerosis. _Nat. Genet._ 29, 160–165 (2001). CAS  PubMed  Google Scholar  * Gurney, M.E. et al. Motor neuron degeneration in


mice that express a human Cu, Zn superoxide dismutase mutation. _Science_ 264, 1772–1775 (1994). CAS  PubMed  Google Scholar  * Wong, P.C. et al. An adverse property of a familial ALS-linked


SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. _Neuron_ 14, 1105–1116 (1995). CAS  PubMed  Google Scholar  * Bruijn, L.I. et al.


ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. _Neuron_ 18, 327–338 (1997). CAS  PubMed  Google Scholar 


* Jackson, M. & Rothstein, J.D. in _Amyotrophic Lateral Sclerosis_ (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 263–278 (Martin Dunitz, London, 2000). Google Scholar  * Shaw,


P.J. in _Amyotrophic Lateral Sclerosis_ (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 113–144 (Martin Dunitz, London, 2000). Google Scholar  * Williamson, T.L. & Cleveland, D.W.


Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. _Nat. Neurosci._ 2, 50–56 (1999). CAS  PubMed  Google Scholar  * Julien, J.-P.


Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. _Cell_ 104, 581–591 (2001). CAS  PubMed  Google Scholar  * Pasinelli, P., Borchelt, D.R., Houseweart, M.K.,


Cleveland, D.W. & Brown, R.H. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase.


_Neurobiology_ 95, 15763–15768 (1998). CAS  Google Scholar  * Couillard-Després, S. et al. Protective effect of neurofilament NF-H overexpression in motor neuron disease induced by mutant


superoxide dismutase. _Proc. Natl. Acad. Sci. USA_ 95, 9626–9630 (1998). PubMed  PubMed Central  Google Scholar  * Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic


animal model of amyotrophic lateral sclerosis. _Nat. Med._ 5, 347–350 (1999). CAS  PubMed  Google Scholar  * Estévez, A.G. et al. Induction of nitric oxide-dependent apoptosis in motor


neurons by zinc-deficient superoxide dismutase. _Science_ 286, 2498–2500 (1999). PubMed  Google Scholar  * Wong, P.C. et al. Copper chaperone for superoxide dismutase is essential to


activate mammalian Cu/Zn superoxide dismutase. _Proc. Natl. Acad. Sci. USA_ 97, 2886–2891 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Subramaniam, J.R. et al. Mutant SOD1 causes


motor neuron disease independent of copper chaperone-mediated copper loading. _Nat. Neurosci._ 5, 301–307 (2002). CAS  PubMed  Google Scholar  * Johnston, J.A., Dalton, M.J., Gurney, M.E.


& Kopito, R.R. Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. _Proc. Natl. Acad. Sci.


USA_ 97, 12571–12576 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type


SOD1. _Science_ 281, 1851–1854 (1998). CAS  PubMed  Google Scholar  * Beaulieu, J.M., Jacomy, H. & Julien, J.P. Formation of intermediate filament protein aggregates with disparate


effects in two transgenic mouse models lacking the neurofilament light subunit. _J. Neurosci._ 20, 5321–5328 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Eyer, J., Cleveland, D.W.,


Wong, P.C. & Peterson, A.C. Pathogenesis of two axonopathies does not require axonal neurofilaments. _Nature_ 391, 584–587 (1998). CAS  PubMed  Google Scholar  * Williamson, T.L. et al.


Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant.


_Proc. Natl. Acad. Sci. USA_ 95, 9631–9636 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Kong, J. & Xu, Z. Overexpression of neurofilament subunit NF-L and NF-H extends survival


of a mouse model for amyotrophic lateral sclerosis. _Neurosci. Lett._ 281, 72–74 (2000). CAS  PubMed  Google Scholar  * Crawford, T. & Pardo, C.A. The neurobiology of childhood spinal


muscular atrophy. _Neurobiol. Dis._ 3, 97–110 (1996). CAS  PubMed  Google Scholar  * Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene.


_Cell_ 80, 155–165 (1995). CAS  PubMed  Google Scholar  * Roy, N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy.


_Cell_ 80, 167–178 (1995). CAS  PubMed  Google Scholar  * Fischer, U., Liu, Q. & Dreyfuss, G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. _Cell_ 90,


1023–1029 (1997). CAS  PubMed  Google Scholar  * Pagliardini, S. et al. Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal


cord. _Hum. Mol. Genet._ 9, 47–56 (2000). CAS  PubMed  Google Scholar  * Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W. & Sendtner, M. Reduced survival motor neuron (Smn) gene


dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. _Hum. Mol. Genet._ 9, 341–346 (2000). CAS  PubMed  Google Scholar  * Hsieh-Li, H.M. et


al. A mouse model for spinal muscular atrophy. _Nat. Genet._ 24, 66–70 (2000). CAS  PubMed  Google Scholar  * Monani, U.R. et al. The human centromeric survival motor neuron gene (SMN2)


rescues embryonic lethality in Smn−/− mice and results in a mouse with spinal muscular atrophy. _Hum. Mol. Genet._ 9, 333–339 (2000). CAS  PubMed  Google Scholar  * Chang, J.-G. et al.


Treatment of spinal muscular atrphy by sodium butyrate. _Proc. Natl. Acad. Sci. USA_ 98, 9808–9813 (2001). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS


The authors thank colleagues from JHMI, particularly S. Sisodia, M. Lee, G. Thinakaren, E. Koo, J. Subramaniam, L. Martin, V. Koliatsos, A. Bergin, L. Brujin, C. Pardo, B. Rabin, T.


Crawford, M. Becher, P. Hoffman, J. Griffin, J. Rothstein, J. Troncoso, T. Li, V. Culotta and D. Cleveland as well as those at other institutions (J. Gitlin) for contributions to the


original work cited in this review and for discussions. Supported by grants from the U. S. Public Health Service (AG05146, AG07914, AG10480, AG10491, AG14248, NS07435, NS20471, NS37145,


NS10580, NS37771, NS40014, NS38377, NS38065) as well as the Metropolitan Life Foundation, Adler Foundation, and Bristol-Myers Squibb Foundation. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, 21205-2196, Maryland, USA Philip C. Wong, Huaibin Cai, 


David R. Borchelt & Donald L. Price * Department of Neuroscience, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, 21205-2196,


Maryland, USA Philip C. Wong, Huaibin Cai, David R. Borchelt & Donald L. Price * Department of Neurology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720


Rutland Avenue, Baltimore, 21205-2196, Maryland, USA Donald L. Price * The Division of Neuropathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720


Rutland Avenue, Baltimore, 21205-2196, Maryland, USA Philip C. Wong, Huaibin Cai, David R. Borchelt & Donald L. Price Authors * Philip C. Wong View author publications You can also


search for this author inPubMed Google Scholar * Huaibin Cai View author publications You can also search for this author inPubMed Google Scholar * David R. Borchelt View author publications


You can also search for this author inPubMed Google Scholar * Donald L. Price View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR


Correspondence to Philip C. Wong. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wong, P., Cai, H., Borchelt, D. _et al._ Genetically engineered mouse


models of neurodegenerative diseases. _Nat Neurosci_ 5, 633–639 (2002). https://doi.org/10.1038/nn0702-633 Download citation * Received: 14 January 2002 * Accepted: 30 May 2002 * Issue Date:


01 July 2002 * DOI: https://doi.org/10.1038/nn0702-633 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative