Meigo governs dendrite targeting specificity by modulating ephrin level and n-glycosylation

feature-image

Play all audios:

Loading...

ABSTRACT Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic


screen in _Drosophila melanogaster_. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal


lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins,


including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in _meigo_ mutant flies, and _ephrin_ knockdown caused a similar


projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin _N_-glycosylation, which was required for its optimal function _in vivo_. Thus, Meigo, an


ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein _N_-glycosylation. Furthermore, Ephrin appears to be an important substrate that


mediates Meigo's function in refinement of glomerular targeting. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS COMBINATORIAL SELECTIVE ER-PHAGY REMODELS THE ER DURING NEUROGENESIS


Article Open access 01 March 2024 ENDOCYTOSIS RESTRICTS DENDRITE BRANCHING VIA REMOVING ECTOPICALLY LOCALIZED BRANCHING LIGANDS Article Open access 07 November 2024 ENDOCYTOSIS IN THE AXON


INITIAL SEGMENT MAINTAINS NEURONAL POLARITY Article Open access 17 August 2022 REFERENCES * Mumm, J.S. et al. _In vivo_ imaging reveals dendritic targeting of laminated afferents by


zebrafish retinal ganglion cells. _Neuron_ 52, 609–621 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Vrieseling, E. & Arber, S. Target-induced transcriptional control of


dendritic patterning and connectivity in motor neurons by the ETS gene _Pea3_. _Cell_ 127, 1439–1452 (2006). CAS  PubMed  Google Scholar  * Jefferis, G.S. & Hummel, T. Wiring specificity


in the olfactory system. _Semin. Cell Dev. Biol._ 17, 50–65 (2006). PubMed  Google Scholar  * Spletter, M.L. et al. Lola regulates _Drosophila_ olfactory projection neuron identity and


targeting specificity. _Neural Dev._ 2, 14 (2007). PubMed  PubMed Central  Google Scholar  * Komiyama, T., Johnson, W., Luo, L. & Jefferis, G. From lineage to wiring specificity. POU


domain transcription factors control precise connections of _Drosophila_ olfactory projection neurons. _Cell_ 112, 157–167 (2003). CAS  PubMed  Google Scholar  * Jefferis, G.S. et al.


Developmental origin of wiring specificity in the olfactory system of _Drosophila_. _Development_ 131, 117–130 (2004). CAS  PubMed  Google Scholar  * Komiyama, T., Sweeney, L., Schuldiner,


O., Garcia, K. & Luo, L. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. _Cell_ 128, 399–410 (2007). CAS  PubMed  Google


Scholar  * Sweeney, L.B. et al. Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. _Neuron_ 72, 734–747 (2011). CAS  PubMed  PubMed


Central  Google Scholar  * Zhu, H. & Luo, L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. _Neuron_ 42, 63–75 (2004). CAS


  PubMed  Google Scholar  * Hong, W. et al. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. _Nat. Neurosci._ 12, 1542–1550 (2009). CAS 


PubMed  PubMed Central  Google Scholar  * Zhu, H. et al. Dendritic patterning by Dscam and synaptic partner matching in the _Drosophila_ antennal lobe. _Nat. Neurosci._ 9, 349–355 (2006).


CAS  PubMed  Google Scholar  * Hong, W., Mosca, T. & Luo, L. Teneurins instruct synaptic partner matching in an olfactory map. _Nature_ 484, 201–207 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. _Nat. Rev. Mol. Cell Biol._ 8, 519–529 (2007). CAS  PubMed  Google


Scholar  * Cudna, R.E. & Dickson, A.J. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. _Biotechnol. Bioeng._ 81, 56–65 (2003). CAS  PubMed  Google


Scholar  * Schröder, M. & Kaufman, R.J. ER stress and the unfolded protein response. _Mutat. Res._ 569, 29–63 (2005). PubMed  Google Scholar  * Ryoo, H.D., Domingos, P., Kang, M. &


Steller, H. Unfolded protein response in a _Drosophila_ model for retinal degeneration. _EMBO J._ 26, 242–252 (2007). CAS  PubMed  Google Scholar  * Souid, S., Lepesant, J. & Yanicostas,


C. The _xbp-1_ gene is essential for development in _Drosophila_. _Dev. Genes Evol._ 217, 159–167 (2007). CAS  PubMed  Google Scholar  * Haecker, A. et al. Wollknauel is required for embryo


patterning and encodes the _Drosophila_ ALG5 UDP-glucose:dolichyl-phosphate glucosyltransferase. _Development_ 135, 1745–1749 (2008). CAS  PubMed  Google Scholar  * Dejima, K. et al. The


ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in


_Caenorhabditis elegans_. _FASEB J._ 23, 2215–2225 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Chihara, T., Luginbuhl, D. & Luo, L. Cytoplasmic and mitochondrial protein


translation in axonal and dendritic terminal arborization. _Nat. Neurosci._ 10, 828–837 (2007). CAS  PubMed  Google Scholar  * Tanaka, N.K., Awasaki, T., Shimada, T. & Ito, K.


Integration of chemosensory pathways in the _Drosophila_ second-order olfactory centers. _Curr. Biol._ 14, 449–457 (2004). CAS  PubMed  Google Scholar  * Newsome, T.P., Asling, B. &


Dickson, B. Analysis of _Drosophila_ photoreceptor axon guidance in eye-specific mosaics. _Development_ 127, 851–860 (2000). CAS  PubMed  Google Scholar  * Kobayashi, T., Sleeman, J.,


Coughtrie, M. & Burchell, B. Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. _Biochem. J._


400, 281–289 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Komiyama, T., Carlson, J. & Luo, L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and


hierarchical interactions. _Nat. Neurosci._ 7, 819–825 (2004). CAS  PubMed  Google Scholar  * Khanna, M.R., Stanley, B. & Thomas, G. Towards a membrane proteome in _Drosophila_: a method


for the isolation of plasma membrane. _BMC Genomics_ 11, 302 (2010). PubMed  PubMed Central  Google Scholar  * Papoulas, O., Hays, T. & Sisson, J. The golgin Lava lamp mediates


dynein-based Golgi movements during _Drosophila_ cellularization. _Nat. Cell Biol._ 7, 612–618 (2005). CAS  PubMed  Google Scholar  * Ishida, N. & Kawakita, M. Molecular physiology and


pathology of the nucleotide sugar transporter family (SLC35). _Pflugers Arch._ 447, 768–775 (2004). CAS  PubMed  Google Scholar  * Goto, S. et al. UDP-sugar transporter implicated in


glycosylation and processing of Notch. _Nat. Cell Biol._ 3, 816–822 (2001). CAS  PubMed  Google Scholar  * Lüders, F. et al. Slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate


transporter essential for development in _Drosophila_. _EMBO J._ 22, 3635–3644 (2003). PubMed  PubMed Central  Google Scholar  * Selva, E.M. et al. Dual role of the fringe connection gene in


both heparan sulphate and fringe-dependent signaling events. _Nat. Cell Biol._ 3, 809–815 (2001). CAS  PubMed  Google Scholar  * Ishikawa, H.O. et al. Two pathways for importing GDP-fucose


into the endoplasmic reticulum lumen function redundantly in the _O_-fucosylation of Notch in _Drosophila_. _J. Biol. Chem._ 285, 4122–4129 (2010). CAS  PubMed  Google Scholar  * Lin, Y.R.,


Reddy, B. & Irvine, K. Requirement for a core 1 galactosyltransferase in the _Drosophila_ nervous system. _Dev. Dyn._ 237, 3703–3714 (2008). CAS  PubMed  PubMed Central  Google Scholar 


* Repnikova, E. et al. Sialyltransferase regulates nervous system function in _Drosophila_. _J. Neurosci._ 30, 6466–6476 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Lin, X. &


Perrimon, N. Dally cooperates with _Drosophila_ Frizzled 2 to transduce Wingless signaling. _Nature_ 400, 281–284 (1999). CAS  PubMed  Google Scholar  * Takei, Y., Ozawa, Y., Sato, M.,


Watanabe, A. & Tabata, T. Three _Drosophila_ EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. _Development_ 131, 73–82 (2004). CAS  PubMed  Google


Scholar  * Kamimura, K. et al. Specific and flexible roles of heparan sulfate modifications in _Drosophila_ FGF signaling. _J. Cell Biol._ 174, 773–778 (2006). CAS  PubMed  PubMed Central 


Google Scholar  * Léonard, R. et al. The _Drosophila_ fused lobes gene encodes an _N_-acetylglucosaminidase involved in _N_-glycan processing. _J. Biol. Chem._ 281, 4867–4875 (2006). PubMed


  Google Scholar  * Nakanishi, H. et al. Hut1 proteins identified in _Saccharomyces cerevisiae_ and _Schizosaccharomyces pombe_ are functional homologues involved in the protein-folding


process at the endoplasmic reticulum. _Yeast_ 18, 543–554 (2001). CAS  PubMed  Google Scholar  * Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the


unfolded protein response. _Science_ 313, 104–107 (2006). CAS  PubMed  Google Scholar  * Murray, J.I. et al. Diverse and specific gene expression responses to stresses in cultured human


cells. _Mol. Biol. Cell_ 15, 2361–2374 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring


endoplasmic reticulum stress. _Nat. Med._ 10, 98–102 (2004). CAS  PubMed  Google Scholar  * Elefant, F. & Palter, K. Tissue-specific expression of dominant negative mutant _Drosophila_


HSC70 causes developmental defects and lethality. _Mol. Biol. Cell_ 10, 2101–2117 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Iwai, Y. et al. Axon patterning requires DN-cadherin,


a novel neuronal adhesion receptor, in the _Drosophila_ embryonic CNS. _Neuron_ 19, 77–89 (1997). CAS  PubMed  Google Scholar  * Chen, C.H. et al. A synthetic maternal-effect selfish


genetic element drives population replacement in _Drosophila_. _Science_ 316, 597–600 (2007). CAS  PubMed  Google Scholar  * Lehrman, M.A. Stimulation of _N_-linked glycosylation and


lipid-linked oligosaccharide synthesis by stress responses in metazoan cells. _Crit. Rev. Biochem. Mol. Biol._ 41, 51–75 (2006). CAS  PubMed  Google Scholar  * Toth, J. et al. Crystal


structure of an ephrin ectodomain. _Dev. Cell_ 1, 83–92 (2001). CAS  PubMed  Google Scholar  * Tien, A.C. et al. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine


bridge formation of the Lin12-Notch repeats in _Drosophila melanogaster_. _J. Cell Biol._ 182, 1113–1125 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Reyes, F. et al. The


nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for


embryo sac progress in _Arabidopsis thaliana_. _Plant J._ 61, 423–435 (2010). CAS  PubMed  Google Scholar  * Cutforth, T. et al. Axonal ephrin-As and odorant receptors: coordinate


determination of the olfactory sensory map. _Cell_ 114, 311–322 (2003). CAS  PubMed  Google Scholar  * Mosca, T.J., Hong, W., Dani, V., Favaloro, V. & Luo, L. Trans-synaptic Teneurin


signaling in neuromuscular synapse organization and target choice. _Nature_ 484, 237–241 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Lee, T. & Luo, L. Mosaic analysis with a


repressible cell marker for studies of gene function in neuronal morphogenesis. _Neuron_ 22, 451–461 (1999). CAS  PubMed  Google Scholar  * Wu, J.S. & Luo, L. A protocol for mosaic


analysis with a repressible cell marker (MARCM) in _Drosophila_. _Nat. Protoc._ 1, 2583–2589 (2006). CAS  PubMed  Google Scholar  * Yamamoto-Hino, M. et al. Cisterna-specific localization of


glycosylation-related proteins to the Golgi apparatus. _Cell Struct. Funct._ 37, 55–63 (2012). CAS  PubMed  Google Scholar  * Bossing, T. & Brand, A. Dephrin, a transmembrane ephrin


with a unique structure, prevents interneuronal axons from exiting the _Drosophila_ embryonic CNS. _Development_ 129, 4205–4218 (2002). CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank J.B. Thomas, Bloomington and the Kyoto _Drosophila_ Stock Center for fly stocks, A.H. Brand (University of Cambridge) for the Ephrin antibody and fly stocks, S.


Goto (Rikkyo University) for the dGLG1 (120 kDa) antibody, C. Field (Harvard University) for the Lava Lamp antibody, T. Uemura (Kyoto University) for the _UAS-DNcadherin_ plasmid, H.D. Ryoo


(New York University) and P.M. Domingos (Instituto de Tecnologia Química e Biológica) for xbp1:EGFP-related reagents and the Hsc3 antibody, C.-H. Chen for advice on constructing shRNAs, G.


Thomas and M. Khanna for advice on performing OptiPrep density gradient centrifugation, and all of the members of the Miura and Luo laboratories for comments on this study. We especially


thank T. Mosca for improving the manuscript and M. Okumura and T.C. for the blind test. L.L. is funded by the Howard Hughes Medical Institute. This work was supported by grants from the


Ministry of Education, Culture, Sports, Science and Technology in Japan to M.M. and T.C., the Japan Society for the Promotion of Science to S.U.S., M.M. and T.C., the Japan Science and


Technology Agency to M.M. and T.C., and the US National Institutes of Health (R01 DC005982) to L.L. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Genetics, Graduate School of


Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan Sayaka U Sekine, Shuka Haraguchi, Kinhong Chao, Tomoko Kato, Masayuki Miura & Takahiro Chihara * Howard Hughes Medical


Institute and Department of Biology, Stanford University, Stanford, California, USA Liqun Luo * Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,


Tokyo, Japan Masayuki Miura * Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo, Japan Takahiro Chihara Authors * Sayaka U Sekine View


author publications You can also search for this author inPubMed Google Scholar * Shuka Haraguchi View author publications You can also search for this author inPubMed Google Scholar *


Kinhong Chao View author publications You can also search for this author inPubMed Google Scholar * Tomoko Kato View author publications You can also search for this author inPubMed Google


Scholar * Liqun Luo View author publications You can also search for this author inPubMed Google Scholar * Masayuki Miura View author publications You can also search for this author


inPubMed Google Scholar * Takahiro Chihara View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.U.S. performed most of the experiments and


analyzed the data. S.H., K.C. and T.K. assisted in some experiments. T.C. supervised the project. S.U.S. and T.C. wrote the paper with feedback from L.L. and M.M. CORRESPONDING AUTHOR


Correspondence to Takahiro Chihara. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES


Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 3706 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Sekine, S., Haraguchi, S., Chao, K.


_et al._ Meigo governs dendrite targeting specificity by modulating Ephrin level and _N_-glycosylation. _Nat Neurosci_ 16, 683–691 (2013). https://doi.org/10.1038/nn.3389 Download citation *


Received: 15 February 2013 * Accepted: 01 April 2013 * Published: 28 April 2013 * Issue Date: June 2013 * DOI: https://doi.org/10.1038/nn.3389 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative