New perspectives for rashba spin–orbit coupling

feature-image

Play all audios:

Loading...

ABSTRACT In 1984, Bychkov and Rashba introduced a simple form of spin–orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past


30 years, Rashba spin–orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative,


with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological


classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered


graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


RASHBA-LIKE PHYSICS IN CONDENSED MATTER Article 24 August 2022 SYNTHETIC RASHBA SPIN–ORBIT SYSTEM USING A SILICON METAL-OXIDE SEMICONDUCTOR Article 03 June 2021 FIRST-PRINCIPLES


DETERMINATION OF SPIN–ORBIT COUPLING PARAMETERS IN TWO-DIMENSIONAL MATERIALS Article 25 March 2025 REFERENCES * Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. _Phys.


Rev._ 100, 580–586 (1955). Article  CAS  Google Scholar  * Rashba, E. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field


perpendicular to the plane of the loop. _Sov. Phys. Solid State_ 2, 1109–1122 (1960). Google Scholar  * Vas'ko, F. T. Spin splitting in the spectrum of two-dimensional electrons due to


the surface potential. _P. Zh. Eksp. Teor. Fiz._ 30, 574–577 (1979). CAS  Google Scholar  * Bychkov, Y. A. & Rasbha, E. I. Properties of a 2D electron gas with lifted spectral


degeneracy. _P. Zh. Eksp. Teor. Fiz._ 39, 66–69 (1984). CAS  Google Scholar  * Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Zutic, I. Semiconductor spintronics. _Acta Phys.


Slovaca_ 57, 565–907 (2007). Article  CAS  Google Scholar  * Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. _Nature Mater._ 6, 813–823 (2007).


Article  CAS  Google Scholar  * Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. _Nature Mater._ 11, 382–390 (2012). Article  CAS  Google Scholar  * Dyakonov, M. I.


& Perel, V. I. Possibility of orienting electron spins with current. _ZhETF Pis. Red._ 13, 657–660 (1971). Google Scholar  * Hirsch, J. Spin Hall effect. _Phys. Rev. Lett._ 83,


1834–1837 (1999). Article  CAS  Google Scholar  * Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. _Science_ 301, 1348–1351 (2003).


Article  CAS  Google Scholar  * Sinova, J. et al. Universal intrinsic spin Hall effect. _Phys. Rev. Lett._ 92, 126603 (2004). Article  CAS  Google Scholar  * Xiao, D., Chang, M.-C. &


Niu, Q. Berry phase effects on electronic properties. _Rev. Mod. Phys._ 82, 1959–2007 (2010). Article  CAS  Google Scholar  * Kato, Y. K., Mährlein, S., Gossard, A. C. & Awschalom, D. D.


Observation of the spin Hall effect in semiconductors. _Science_ 306, 1910–1913 (2004). Article  CAS  Google Scholar  * Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T.


Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system. _Phys. Rev. Lett._ 94, 047204 (2005). Article  CAS  Google Scholar  *


Wunderlich, J. et al. Spin Hall effect transistor. _Science_ 330, 1801–1804 (2010). Article  CAS  Google Scholar  * Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the


spin Hall effect. _Nature_ 442, 176–179 (2006). Article  CAS  Google Scholar  * Hoffmann, A. Spin Hall effects in metals. _IEEE Trans. Magn._ 49, 5172–5193 (2013). Article  CAS  Google


Scholar  * Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. _Rev. Mod. Phys._


http://journals.aps.org/rmp/accepted/58077E11Q8f15e01e0aa5510b2767e3da25148b87 (2015). * Rauch, H. et al. Verification of coherent spinor rotation of fermions. _Phys. Lett. A_ 54, 425–427


(1975). Article  Google Scholar  * König, M. et al. Direct observation of the Aharonov–Casher Phase. _Phys. Rev. Lett._ 96, 076804 (2006). Article  CAS  Google Scholar  * Bergsten, T.,


Kobayashi, T., Sekine, Y. & Nitta, J. Experimental demonstration of the time reversal Aharonov–Casher effect. _Phys. Rev. Lett._ 97, 196803 (2006). Article  CAS  Google Scholar  *


Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. _Phys. Rev. Lett._ 53, 319–321 (1984). Article  CAS  Google Scholar  * Nitta, J., Akazaki, T., Takayanagi, H.


& Enoki, T. Gate control of spin-orbit interaction in an inverted InGaAs/InAlAs heterostructure. _Phys. Rev. Lett._ 78, 1335–1338 (1997). Article  CAS  Google Scholar  * Wunderlich, J.


et al. Spin-injection Hall effect in a planar photovoltaic cell. _Nature Phys._ 5, 675–681 (2009). Article  CAS  Google Scholar  * Ivchenko, E. L. & Pikus, G. E. New photogalvanic effect


in gyrotropic crystals. _JETP Lett._ 27, 604–608 (1978). Google Scholar  * Ganichev, S. D. Spin-galvanic effect and spin orientation by current in non-magnetic semiconductors. _Int. J. Mod.


Phys. B_ 22, 1–26 (2008). Article  CAS  Google Scholar  * Rojas-Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials.


_Nature Commun._ 4, 2944 (2013). Article  CAS  Google Scholar  * Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron


systems. _Solid State Commun._ 73, 233–235 (1990). Article  Google Scholar  * Kato, Y. K., Myers, R., Gossard, A. & Awschalom, D. D. Current-induced spin polarization in strained


semiconductors. _Phys. Rev. Lett._ 93, 176601 (2004). Article  CAS  Google Scholar  * Ganichev, S. D. et al. Electric current-induced spin orientation in quantum well structures. _J. Magn.


Magn. Mater._ 300, 127–131 (2006). Article  CAS  Google Scholar  * Schultz, M. et al. Rashba spin splitting in a gated HgTe quantum well. _Semicond. Sci. Technol._ 11, 1168–1172 (1996).


Article  CAS  Google Scholar  * Datta, S. & Das, B. Electronic analog of the electro-optic modulator. _Appl. Phys. Lett._ 56, 665–667 (1990). Article  CAS  Google Scholar  * Koo, H. C.


et al. Control of spin precession in a spin-injected field effect transistor. _Science_ 325, 1515–1518 (2009). Article  CAS  Google Scholar  * Ohe, J., Yamamoto, M., Ohtsuki, T. & Nitta,


J. Mesoscopic Stern–Gerlach spin filter by nonuniform spin-orbit interaction. _Phys. Rev. B_ 72, 041308 (2005). Article  CAS  Google Scholar  * Kohda, M. et al. Spin–orbit induced


electronic spin separation in semiconductor nanostructures. _Nature Commun._ 3, 1082 (2012). Article  CAS  Google Scholar  * Herbert, S. T., Muhammad, M. & Johnson, M. All-electric


quantum point contact spin-polarizer. _Nature Nanotech._ 4, 759–764 (2009). Article  CAS  Google Scholar  * Frolov, S. M. et al. Ballistic spin resonance. _Nature_ 458, 868–871 (2009).


Article  CAS  Google Scholar  * Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. _Science_ 318,


1430–1433 (2007). Article  CAS  Google Scholar  * Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. _Nature_ 468,


1084–1087 (2010). Article  CAS  Google Scholar  * Van den Berg, J. et al. Fast spin-orbit qubit in an indium antimonide nanowire. _Phys. Rev. Lett._ 110, 066806 (2013). Article  CAS  Google


Scholar  * Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. _Nature_ 490, 380–383 (2012). Article  CAS  Google Scholar  * Dyakonov, M. & Perel, V. Spin


relaxation of conduction electrons in noncentrosymmetric semiconductors. _Sov. Phys. Solid State_ 13, 3023–3026 (1972). Google Scholar  * Averkiev, N. S. & Golub, L. E. Giant spin


relaxation anisotropy in zinc-blende heterostructures. _Phys. Rev. B_ 60, 15582–15584 (1999). Article  CAS  Google Scholar  * Schliemann, J., Egues, J. C. & Loss, D. Nonballistic


spin-field-effect transistor. _Phys. Rev. Lett._ 90, 146801 (2003). Article  CAS  Google Scholar  * Bernevig, B. A., Orenstein, J. & Zhang, S.-C. Exact SU(2) symmetry and persistent spin


helix in a spin-orbit coupled system. _Phys. Rev. Lett._ 97, 236601 (2006). Article  CAS  Google Scholar  * Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor


quantum wells. _Nature_ 458, 610–613 (2009). Article  CAS  Google Scholar  * Sasaki, A. et al. Direct determination of spin–orbit interaction coefficients and realization of the persistent


spin helix symmetry. _Nature Nanotech._ 9, 703–709 (2014). Article  CAS  Google Scholar  * Slonczewski, J. C. Current-driven excitation of magnetic multilayers. _J. Magn. Magn. Mater._ 159,


L1–L7 (1996). Article  CAS  Google Scholar  * Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. _Phys. Rev. B_ 54, 9353–9358 (1996). Article  CAS  Google


Scholar  * Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. _Phys. Rev. B_ 72, 033203 (2005). Article  CAS  Google Scholar  * Manchon, A. & Zhang,


S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. _Phys. Rev. B_ 78, 212405 (2008). Article  CAS  Google Scholar  * Miron, I. M. et al. Perpendicular switching of a


single ferromagnetic layer induced by in-plane current injection. _Nature_ 476, 189–193 (2011). Article  CAS  Google Scholar  * Chernyshov, A. et al. Evidence for reversible control of


magnetization in a ferromagnetic material by means of spin–orbit magnetic field. _Nature Phys._ 5, 656–659 (2009). Article  CAS  Google Scholar  * Miron, I. M. et al. Current-driven spin


torque induced by the Rashba effect in a ferromagnetic metal layer. _Nature Mater._ 9, 230–234 (2010). Article  CAS  Google Scholar  * Kurebayashi, H. et al. An antidamping spin–orbit torque


originating from the Berry curvature. _Nature Nanotech._ 9, 211–217 (2014). Article  CAS  Google Scholar  * Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic


heterostructures. _Nature Nanotech._ 8, 587–593 (2013). Article  CAS  Google Scholar  * Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. _Science_ 336,


555–558 (2012). Article  CAS  Google Scholar  * Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. _Nature_ 511, 449–451 (2014). Article  CAS  Google Scholar  *


Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. _Nature Mater._ 13, 699–704 (2014). Article  CAS 


Google Scholar  * Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. _Phys. Rev. Lett._ 113, 157201 (2014). Article  CAS  Google Scholar  *


Wadley, P. et al. Electrical switching of an antiferromagnet. Preprint at http://arxiv.org/abs/1503.03765 (2015). * Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in


antiferromagnetic substances. _Sov. Phys. JETP_ 5, 1259–1262 (1957). Google Scholar  * Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. _Phys. Rev._ 120, 91–98


(1960). Article  CAS  Google Scholar  * Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. _Nature Nanotech._ 8, 899–911 (2013). Article  CAS  Google


Scholar  * Zakeri, K. et al. Asymmetric spin-wave dispersion on Fe(110): Direct evidence of the Dzyaloshinskii–Moriya interaction. _Phys. Rev. Lett._ 104, 137203 (2010). Article  CAS  Google


Scholar  * Onose, Y. et al. Observation of the magnon Hall effect. _Science_ 329, 297–299 (2010). Article  CAS  Google Scholar  * Matsumoto, R. & Murakami, S. Theoretical prediction of


a rotating magnon wave packet in ferromagnets. _Phys. Rev. Lett._ 106, 197202 (2011). Article  CAS  Google Scholar  * Manchon, A., Ndiaye, P. B., Moon, J., Lee, H. & Lee, K.


Magnon-mediated Dzyaloshinskii–Moriya torque in homogeneous ferromagnets. _Phys. Rev. B_ 90, 224403 (2014). Article  CAS  Google Scholar  * Hasan, M. Z. & Kane, C. L. Colloquium:


Topological insulators. _Rev. Mod. Phys._ 82, 3045–3067 (2010). Article  CAS  Google Scholar  * Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. _Phys. Rev. Lett._ 95,


226801 (2005). Article  CAS  Google Scholar  * Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. _Science_


314, 1757–1761 (2006). Article  CAS  Google Scholar  * König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. _Science_ 318, 766–770 (2007). Article  CAS  Google Scholar 


* Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. _Phys. Rev. Lett._ 107, 136603 (2011). Article  CAS  Google Scholar  * Hsieh, D.


et al. A tunable topological insulator in the spin helical Dirac transport regime. _Nature_ 460, 1101–1105 (2009). Article  CAS  Google Scholar  * Roushan, P. et al. Topological surface


states protected from backscattering by chiral spin texture. _Nature_ 460, 1106–1109 (2009). Article  CAS  Google Scholar  * Beenakker, C. W. J. Search for Majorana fermions in


superconductors. _Annu. Rev. Condens. Matter Phys._ 4, 113–136 (2013). Article  CAS  Google Scholar  * Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the


surface of a topological insulator. _Phys. Rev. Lett._ 100, 096407 (2008). Article  CAS  Google Scholar  * Středa, P. & Šeba, P. Antisymmetric spin filtering in one-dimensional electron


systems with uniform spin-orbit coupling. _Phys. Rev. Lett._ 90, 256601 (2003). Article  CAS  Google Scholar  * Lutchyn, R., Sau, J. & Das Sarma, S. Majorana fermions and a topological


phase transition in semiconductor-superconductor heterostructures. _Phys. Rev. Lett._ 105, 077001 (2010). Article  CAS  Google Scholar  * Oreg, Y., Refael, G. & von Oppen, F. Helical


liquids and Majorana bound states in quantum wires. _Phys. Rev. Lett._ 105, 177002 (2010). Article  CAS  Google Scholar  * Mourik, V. et al. Signatures of Majorana fermions in hybrid


superconductor-semiconductor nanowire devices. _Science_ 336, 1003–1007 (2012). Article  CAS  Google Scholar  * Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic


chains on a superconductor. _Science_ 346, 602–607 (2014). Article  CAS  Google Scholar  * Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging


from magnetic nanoparticles on a superconductor without spin-orbit coupling. _Phys. Rev. B_ 84, 195442 (2011). Article  CAS  Google Scholar  * Moore, G. & Read, N. Nonabelions in the


fractional quantum Hall effect. _Nucl. Phys. B_ 360, 362–396 (1991). Article  Google Scholar  * Nayak, C., Simon, S., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and


topological quantum computation. _Rev. Mod. Phys._ 80, 1083–1159 (2008). Article  CAS  Google Scholar  * Fu, L. Topological crystalline insulators. _Phys. Rev. Lett._ 106, 106802 (2011).


Article  CAS  Google Scholar  * Alexandradinata, A., Fang, C., Gilbert, M. J. & Bernevig, B. A. Spin-orbit-free topological insulators without time-reversal symmetry. _Phys. Rev. Lett._


113, 116403 (2014). Article  CAS  Google Scholar  * Ikegami, H., Tsutsumi, Y. & Kono, K. Chiral symmetry breaking in 3He-A. _Science_ 341, 59–62 (2013). Article  CAS  Google Scholar  *


Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. _Adv. Phys._ 63, 1–76 (2014). Article  CAS  Google Scholar  * Volovik, G. E. An analog of the quantum Hall effect


in a superfluid 3He film. _Sov. Phys. JETP_ 67, 1804–1811 (1988). Google Scholar  * Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in


graphene. _Nature Phys._ 2, 620–625 (2006). Article  CAS  Google Scholar  * Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. _Phys. Rev._ 109, 272–279 (1958). Article  CAS 


Google Scholar  * Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. _Nature_ 438, 201–204 (2005).


Article  CAS  Google Scholar  * Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. _Nature Nanotech._ 9, 794–807 (2014). Article  CAS  Google Scholar  * Xiao, D.,


Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. _Phys. Rev. Lett._ 108, 196802 (2012). Article  CAS 


Google Scholar  * Roth, A. et al. Nonlocal transport in the quantum spin Hall state. _Science_ 325, 294–297 (2009). Article  CAS  Google Scholar  * Qiao, Z. et al. Quantum anomalous Hall


effect in graphene proximity coupled to an antiferromagnetic insulator. _Phys. Rev. Lett._ 112, 116404 (2014). Article  CAS  Google Scholar  * Haldane, F. D. M. Model for a quantum Hall


effect without Landau levels: Condensed-matter realization of the 'parity anomaly'. _Phys. Rev. Lett._ 61, 2015–2018 (1988). Article  CAS  Google Scholar  * Balakrishnan, J. et al.


Giant spin Hall effect in graphene grown by chemical vapour deposition. _Nature Commun._ 5, 4748 (2014). Article  CAS  Google Scholar  * Young, A. F. et al. Tunable symmetry breaking and


helical edge transport in a graphene quantum spin Hall state. _Nature_ 505, 528–532 (2014). Article  CAS  Google Scholar  * Marchenko, D. et al. Giant Rashba splitting in graphene due to


hybridization with gold. _Nature Commun._ 3, 1232 (2012). Article  CAS  Google Scholar  * Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and


topological transport. _Phys. Rev. Lett._ 99, 236809 (2007). Article  CAS  Google Scholar  * Rycerz, A., Tworzydło, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene.


_Nature Phys._ 3, 172–175 (2007). Article  CAS  Google Scholar  * Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. _Science_ 340, 1427–1430


(2013). Article  CAS  Google Scholar  * Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. _Science_ 332, 328–330 (2011). Article  CAS  Google Scholar  * Gorbachev, R.


V. et al. Detecting topological currents in graphene superlattices. _Science_ 346, 448–451 (2014). Article  CAS  Google Scholar  * Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and


pseudospins in layered transition metal dichalcogenides. _Nature Phys._ 10, 343–350 (2014). Article  CAS  Google Scholar  * Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley


polarization in monolayer MoS2 by optical helicity. _Nature Nanotech._ 7, 494–498 (2012). Article  CAS  Google Scholar  * Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley


polarization in MoS2 monolayers by optical pumping. _Nature Nanotech._ 7, 490–493 (2012). Article  CAS  Google Scholar  * Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L.


Valleytronics. The valley Hall effect in MoS2 transistors. _Science_ 344, 1489–1492 (2014). Article  CAS  Google Scholar  * Yuan, H. et al. Generation and electric control of


spin-valley-coupled circular photogalvanic current in WSe2 . _Nature Nanotech._ 9, 851–857 (2014). Article  CAS  Google Scholar  * Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa,


Y. Electrically switchable chiral light-emitting transistor. _Science_ 344, 725–728 (2014). Article  CAS  Google Scholar  * Wu, S. et al. Electrical tuning of valley magnetic moment through


symmetry control in bilayer MoS2 . _Nature Phys._ 9, 149–153 (2013). Article  CAS  Google Scholar  * Lin, Y.-J., Jimenez-Garcıa, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein


condensates. _Nature_ 471, 83–86 (2011). Article  CAS  Google Scholar  * Aidelsburger, M. Experimental realization of strong effective magnetic fields in an optical lattice. _Phys. Rev.


Lett._ 107, 255301 (2011). Article  CAS  Google Scholar  * Zhang, J.-Y. et al. Collective dipole oscillations of a spin-orbit coupled Bose–Einstein condensate. _Phys. Rev. Lett._ 109, 115301


(2012). Article  CAS  Google Scholar  * Qu, C., Hamner, C., Gong, M., Zhang, C. & Engels, P. Observation of zitterbewegung in a spin-orbit-coupled Bose–Einstein condensate. _Phys. Rev.


A_ 88, 021604 (2013). Article  CAS  Google Scholar  * Ji, S.-C. et al. Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas. _Nature Phys._ 10,


314–320 (2014). Article  CAS  Google Scholar  * Wang, P., Yu, Z., Fu, Z., Miao, J. & Huang, L. Spin-orbit coupled degenerate Fermi gases. _Phys. Rev. Lett._ 109, 095301 (2012). Article


  CAS  Google Scholar  * Cheuk, L. W. et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. _Phys. Rev. Lett._ 109, 095302 (2012). Article  CAS  Google Scholar  * Jotzu, G.


et al. Experimental realization of the topological Haldane model with ultracold fermions. _Nature_ 515, 237–240 (2014). Article  CAS  Google Scholar  * Williams, R. A. et al. Synthetic


partial waves in ultracold atomic collisions. _Science_ 335, 314–317 (2011). Article  CAS  Google Scholar  * Cole, W. S., Zhang, S., Paramekanti, A. & Trivedi, N. Bose–Hubbard models


with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity. _Phys. Rev. Lett._ 109, 085302 (2012). Article  CAS  Google Scholar  * Radić, J., Di Ciolo, A., Sun, K.


& Galitski, V. Exotic quantum spin models in spin-orbit-coupled Mott insulators. _Phys. Rev. Lett._ 109, 085303 (2012). Article  CAS  Google Scholar  * Cocks, D. et al.


Time-reversal-invariant Hofstadter–Hubbard model with ultracold Fermions. _Phys. Rev. Lett._ 109, 205303 (2012). Article  CAS  Google Scholar  * Cai, Z., Zhou, X. & Wu, C. Magnetic


phases of bosons with synthetic spin-orbit coupling in optical lattices. _Phys. Rev. A_ 85, 061605 (2012). Article  CAS  Google Scholar  * Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G.


Symmetry-protected topological orders in interacting bosonic systems. _Science_ 338, 1604–1606 (2012). Article  CAS  Google Scholar  * Vishwanath, A. & Senthil, T. Physics of


three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect. _Phys. Rev. X_ 3, 011016 (2013). Google Scholar  * Hanson, R. &


Awschalom, D. D. Coherent manipulation of single spins in semiconductors. _Nature_ 453, 1043–1049 (2008). Article  CAS  Google Scholar  * Yang, B.-J. & Nagaosa, N. Emergent topological


phenomena in thin films of pyrochlore iridates. _Phys. Rev. Lett._ 112, 246402 (2014). Article  CAS  Google Scholar  * Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac


semimetal, Na3Bi. _Science_ 343, 864–867 (2014). Article  CAS  Google Scholar  * Xu, S. et al. Observation of Fermi arc surface states in a topological metal. _Science_ 347, 294–298 (2015).


Article  CAS  Google Scholar  * Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. _Annu. Rev. Condens. Matter Phys._ 5,


57–82 (2014). Article  CAS  Google Scholar  * Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. _J. Phys. Chem. Lett._ 3, 2178–2187 (2012). Article  CAS  Google


Scholar  * Ast, C. et al. Giant spin splitting through surface alloying. _Phys. Rev. Lett._ 98, 186807 (2007). Article  CAS  Google Scholar  * Winkler, R. _Spin-Orbit Coupling effects in


Two-Dimensional Electron and Hole Systems_ (Springer, 2003). Book  Google Scholar  * Dyakonov, M. I. & Kachorovskii, V. Y. Spin relaxation of two-dimensional electrons in


noncentrosymmetric semiconductors. _Sov. Phys. Semicond._ 20, 110–112 (1986). Google Scholar  * Bihlmayer, G., Koroteev, Y. M., Echenique, P. M., Chulkov, E. V. & Blügel, S. The


Rashba-effect at metallic surfaces. _Surf. Sci._ 600, 3888–3891 (2006). Article  CAS  Google Scholar  * Park, Y. H. et al. Separation of Rashba and Dresselhaus spin-orbit interactions using


crystal direction dependent transport measurements. _Appl. Phys. Lett._ 103, 252407 (2013). Article  CAS  Google Scholar  * Nakamura, H., Koga, T. & Kimura, T. Experimental evidence of


cubic Rashba effect in an inversion-symmetric oxide. _Phys. Rev. Lett._ 108, 206601 (2012). Article  CAS  Google Scholar  * LaShell, S., McDougall, B. & Jensen, E. Spin splitting of an


Au(111) surface state band observed with angle resolved photoelectron spectroscopy. _Phys. Rev. Lett._ 77, 3419–3422 (1996). Article  CAS  Google Scholar  * Varykhalov, A. et al. Ir(111)


surface state with giant Rashba splitting persists under graphene in air. _Phys. Rev. Lett._ 108, 066804 (2012). Article  CAS  Google Scholar  * King, P. D. C. et al. Large tunable Rashba


spin splitting of a two-dimensional electron gas in Bi2Se3 . _Phys. Rev. Lett._ 107, 096802 (2011). Article  CAS  Google Scholar  * Ishizaka, K. et al. Giant Rashba-type spin splitting in


bulk BiTeI. _Nature Mater._ 10, 521–526 (2011). Article  CAS  Google Scholar  * Moser, J. et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel


junctions. _Phys. Rev. Lett._ 99, 056601 (2007). Article  CAS  Google Scholar  * Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. _Nature


Mater._ 10, 347–351 (2011). Article  CAS  Google Scholar  * Heisenberg, W. _Über den Bau der Atomkerne_. _I. Z. Phys._ 77, 1–11 (1932). Article  CAS  Google Scholar  * Pesin, D. A. &


MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. _Nature Mater._ 11, 409–416 (2012). Article  CAS  Google Scholar  * Liu, X., Borunda, M. F., Liu,


X. & Sinova, J. Effect of induced spin-orbit coupling for atoms via laser fields. _Phys. Rev. Lett._ 102, 046402 (2009). Article  CAS  Google Scholar  * Dalibard, J., Gerbier, F.,


Juzeliunas, G. & Öhberg, P. Artificial gauge potentials for neutral atoms. _Rev. Mod. Phys._ 83, 1523–1543 (2011). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The


authors thank E.I. Rashba, M.I. Dyakonov, D. Xiao, L. Fritz and A.H. MacDonald for useful discussions. A.M. was supported by the King Abdullah University of Science and Technology (KAUST).


H.C.K. was supported by the KIST and KU-KIST Institutional Programmes. J.N. acknowledges support by the Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS; no.


22226001). S.M.F. acknowledges ONR BRC on Majorana Fermions, National Science Foundation (NSF), Sloan Foundation, the Charles E. Kaufman foundation and Nanoscience Foundation. R.A.D. is


supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC) and is part of the D-ITP consortium, a programme of the Netherlands Organisation


for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Physical Science and Engineering


Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia A. Manchon * Center for Spintronics, Korea Institute of Science and Technology (KIST),


39-1 Hawolgok-dong, Seongbukgu, Seoul, 136-791, Korea H. C. Koo * KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-701, Korea H. C. Koo * Department


of Materials Science, Tohoku University, Sendai, 980-8579, Miyagi, Japan J. Nitta * Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA S. M.


Frolov * Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, Utrecht, 3584 CE, The Netherlands R. A. Duine Authors * A.


Manchon View author publications You can also search for this author inPubMed Google Scholar * H. C. Koo View author publications You can also search for this author inPubMed Google Scholar


* J. Nitta View author publications You can also search for this author inPubMed Google Scholar * S. M. Frolov View author publications You can also search for this author inPubMed Google


Scholar * R. A. Duine View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to A. Manchon. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Manchon, A., Koo, H., Nitta, J. _et al._


New perspectives for Rashba spin–orbit coupling. _Nature Mater_ 14, 871–882 (2015). https://doi.org/10.1038/nmat4360 Download citation * Received: 18 January 2015 * Accepted: 22 June 2015 *


Published: 20 August 2015 * Issue Date: September 2015 * DOI: https://doi.org/10.1038/nmat4360 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative