Engineering of nanostructured carbon materials with electron or ion beams

feature-image

Play all audios:

Loading...

ABSTRACT Irradiating solids with energetic particles is usually thought to introduce disorder, normally an undesirable phenomenon. But recent experiments on electron or ion irradiation of


various nanostructures demonstrate that it can have beneficial effects and that electron or ion beams may be used to tailor the structure and properties of nanosystems with high precision.


Moreover, in many cases irradiation can lead to self-organization or self-assembly in nanostructures. In this review we survey recent advances in the rapidly evolving area of irradiation


effects in nanostructured materials, with particular emphasis on carbon systems because of their technological importance and the unique ability of graphitic networks to reconstruct under


irradiation. We dwell not only on the physics behind irradiation of nanostructures but also on the technical applicability of irradiation for nanoengineering of carbon and other systems.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS ENHANCING THE ELECTRICAL PROPERTIES OF GRAPHITE NANOFLAKE THROUGH GAMMA-RAY IRRADIATION Article Open access 01 September 2022 A MULTIFUNCTIONAL


CHEMICAL TOOLBOX TO ENGINEER CARBON DOTS FOR BIOMEDICAL AND ENERGY APPLICATIONS Article 16 February 2022 DIRECT OBSERVATION OF THE FORMATION AND STABILIZATION OF METALLIC NANOPARTICLES ON


CARBON SUPPORTS Article Open access 11 December 2020 REFERENCES * Cook, I. Materials research for fusion energy. _Nature Mater._ 5, 77–80 (2006). CAS  Google Scholar  * Nastasi, M., Mayer,


J. & Hirvonen, J. _Ion–solid Interactions: Fundamentals and Applications_ (Cambridge Univ. Press, Cambridge, 1996). Google Scholar  * Ugarte, D. Curling and closure of graphitic networks


under electron-beam irradiation. _Nature_ 359, 707–709 (1992). CAS  Google Scholar  * Banhart, F. & Ajayan, P. M. Carbon onions as nanoscopic pressure cells for diamond formation,


_Nature_ 382, 433–435 (1996). CAS  Google Scholar  * Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. _Nature_ 396, 323–323 (1998). CAS  Google Scholar  *


Kis, A. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. _Nature Mater._ 3, 153–157 (2004). CAS  Google Scholar  * Gómez-Navarro, G. et al. Tuning the


conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. _Nature Mater._ 4, 534–539 (2005). Google Scholar  * Terrones, M., Terrones, H.,


Banhart, F., Charlier, J.-C. & Ajayan, P. M. Coalescence of single-walled carbon nanotubes. _Science_ 288, 1226–1229 (2000). CAS  Google Scholar  * Hashimoto, A., Suenaga, K., Gloter,


A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. _Nature_ 430, 870–873 (2004). CAS  Google Scholar  * Mickelson, W., Aloni, S., Han, W. Q., Cumings, J.


& Zettl, A. Packing C60 in boron nitride nanotubes. _Science_ 300, 467–469 (2003). CAS  Google Scholar  * Terrones, M. et al. Molecular junctions by joining single-walled carbon


nanotubes. _Phys. Rev. Lett._ 89, 075505 (2002). CAS  Google Scholar  * Sun, L. et al. Carbon nanotubes as high-pressure cylinders and nanoextruders. _Science_ 312, 1199–1202 (2006). CAS 


Google Scholar  * Wesolowski, P., Lyutovich, Y., Banhart, F., Carstanjen, H. D. & Kronmüller, H. Formation of diamond in carbon onions under MeV ion irradiation. _Appl. Phys. Lett._ 71,


1948–1950 (1997). CAS  Google Scholar  * Lifshitz, Y. et al. The mechanism of diamond nucleation from energetic species. _Science_ 297, 1531–1533 (2002). CAS  Google Scholar  * Yao, Y. et


al. Diamond nucleation by energetic pure carbon bombardment. _Phys. Rev. B_ 72, 035402 (2005). Google Scholar  * Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B.


Intertube coupling in ropes of SWNTs. _Phys. Rev. Lett._ 85, 5186–5189 (2000). CAS  Google Scholar  * Wei, B. Q., D'Arcy-Gall, J., Ajayan, P. M. & Ramanath, G. Tailoring structure


and electrical properties of carbon nanotubes using kilo-electron-volt ions. _Appl. Phys. Lett._ 83, 3581–3583 (2003). CAS  Google Scholar  * Raghuveer, M. S. et al. Nanomachining carbon


nanotubes with ion beams _Appl. Phys. Lett._ 84, 4484–4486 (2004). CAS  Google Scholar  * Talapatra, S. et al. Irradiation-induced magnetism in carbon nanostructures. _Phys. Rev. Lett._ 95,


097201 (2005). CAS  Google Scholar  * Esquinazi, P., Spearmann, D., Höhne, R., Setzer, A. & Butz, T. Induced magnetic ordering by proton irradiation in graphite. _Phys. Rev. Lett._ 91,


227201 (2003). CAS  Google Scholar  * Chappert, C. et al. Planar patterned magnetic media obtained by ion irradiation. _Science_ 280, 1919–1922 (1998). CAS  Google Scholar  * Bernas, H. et


al. Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media. _Phys. Rev. Lett._ 91, 077203 (2003). CAS  Google Scholar  * Akcöltekin, E. et al. Creation of multiple


nanodots by single ions. _Nature Nanotechnol._ 2, 290–294 (2007). Google Scholar  * Dhar, S., Davis, R. P. & Feldman, L. C. A novel technique for the fabrication of nanostructures on


silicon carbide using amorphization and oxidation, _Nanotechnology_ 17, 4514–4518 (2006). CAS  Google Scholar  * Heinig, K. H., Muller, T., Schmidt, B., Strobel, M. & Möller, W.


Interfaces under ion irradiation: growth and taming of nanostructures. _Appl. Phys. A_ 77, 17–25 (2003). CAS  Google Scholar  * Klaumünzer, S. Modification of nanostructures by high-energy


ion beams. _Nucl. Instrum. Meth. B_ 244, 1–7 (2006). Google Scholar  * Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. _Nature_


318, 162–163 (1985). CAS  Google Scholar  * Iijima, S. Helical microtubules of graphitic carbon. _Nature_ 354, 56–58 (1991). CAS  Google Scholar  * Geim, A. K. & Novoselov, K. S. The


rise of grapheme. _Nature Mater._ 6, 183–191 (2007). CAS  Google Scholar  * Nasibulin, A. G. et al. A novel hybrid carbon material. _Nature Nanotechnol._ 2, 156–161 (2007). CAS  Google


Scholar  * Banhart, F. Irradiation effects in carbon nanostructures. _Rep. Prog. Phys._ 62, 1181–1221 (1999). CAS  Google Scholar  * Pomoell, J., Krasheninnikov, A. V. & Nordlund, K. Ion


ranges and irradiation-induced defects in multi-walled carbon nanotubes. _J. Appl. Phys._ 96, 2864–2871 (2004). CAS  Google Scholar  * Kunert, T. & Schmidt, R. Excitations and


fragmentation mechanisms in ion–fullerene collisions, _Phys. Rev. Lett._ 86, 5258–5261 (2001). CAS  Google Scholar  * Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and


dislocation dynamics in superplastic nanotubes. _Phys. Rev. Lett._ 98, 075503 (2007). Google Scholar  * Osváth, Z. et al. Atomically resolved STM images of carbon nanotube defects produced


by Ar+ irradiation. _Phys. Rev. B_ 72, 045429 (2005). Google Scholar  * Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. In situ observation of thermal relaxation of


interstitial-vacancy pair defects in a graphite gap. _Phys. Rev. Lett._ 94, 155502 (2005). Google Scholar  * Raghuveer, M. S. et al. Site-selective functionalization of carbon nanotubes.


_Adv. Mater._ 18, 547–552 (2006). CAS  Google Scholar  * Jung, Y. J. et al. Straightening suspended singlewalled carbon nanotubes by ion irradiation. _Nano Lett._ 4, 1109–1113 (2004). CAS 


Google Scholar  * Kim, D.-H. et al. Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation. _Chem. Phys. Lett._ 378, 232–237 (2003). CAS 


Google Scholar  * Ni, B. et al. A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. _J. Phys. Chem. B_ 105, 12719–12725 (2001). CAS  Google


Scholar  * Yang, D. Q., Rochette, J. & Sacher, E. Controlled chemical functionalization of multiwalled carbon nanotubes by kiloelectronvolt argon ion treatment and air exposure.


_Langmuir_ 21, 8539–8545 (2005). CAS  Google Scholar  * Zhu, Y., Yi, T., Zheng, B. & Cao, L. The interaction of C60 fullerene and carbon nanotube with Ar ion beam. _Appl. Surf. Sci._


137, 83–90 (1999). CAS  Google Scholar  * Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Production of defects in supported carbon nanotubes under ion irradiation. _Phys. Rev. B_ 65,


165423 (2002). Google Scholar  * Lu, A. J. & Pan, B. C. Nature of single vacancy in achiral carbon nanotubes. _Phys. Rev. Lett._ 92, 105504 (2004). CAS  Google Scholar  * Rossato, J.,


Baierle, R. J., Fazzio, A. & Mota, R. Vacancy formation process in carbon nanotubes: First-principles approach. _Nano Lett._ 5, 197–200 (2005). CAS  Google Scholar  * Krasheninnikov, A.


V., Lehtinen, P. O., Foster, A. S. & Nieminen, R. M. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. _Chem. Phys. Lett._ 418, 132–136


(2006). CAS  Google Scholar  * Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A. V. & Nieminen, R. M. Irradiation-induced magnetism in graphite: a density functional study.


_Phys. Rev. Lett._ 93, 187202 (2004). CAS  Google Scholar  * Telling, R., Ewels, C., El-Barbary, A. & Heggie, M. Wigner defects bridge the graphite gap. _Nature Mater._ 2, 333–337


(2003). CAS  Google Scholar  * El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. _Phys. Rev. B_ 68,


144107 (2003). Google Scholar  * Kotakoski, J., Krasheninnikov, A. V. & Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes:


atomistic simulations. _Phys. B_ 74, 245420 (2006). Google Scholar  * Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in


multiwalled carbon nanotubes. _Phys. Rev. Lett._ 97, 025501 (2006). CAS  Google Scholar  * Stone, A. J. & Wales, D. J. Theoretical-studies of icosahedral C60 and some related species.


_Chem. Phys. Lett._ 128, 501–503 (1986). CAS  Google Scholar  * Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K. & Kaski, K. Mechanical properties of carbon nanotubes with


vacancy-like defects. _Phys. Rev. B_ 70, 245416 (2004). Google Scholar  * da Silva, A., Fazzio, A. & Antonelli, A. Bundling up carbon nanotubes through Wigner defects. _Nano Lett._ 5,


1045–1049 (2005). CAS  Google Scholar  * Banhart, F., Li, J. X. & Krasheninnikov, A. V. Carbon nanotubes under electron irradiation: stability of the tubes and their action as pipes for


atom transport. _Phys. Rev. B_ 71, 241408(R) (2005). Google Scholar  * Yuzvinsky, T. D. et al. Shrinking a carbon nanotubes. _Nano Lett._ 6, 2718–2722 (2006). CAS  Google Scholar  * Li, J.


X. & Banhart, F. The engineering of hot carbon nanotubes with an electron beam. _Nano Lett._ 4, 1143–1146 (2004). CAS  Google Scholar  * Banhart, F., Li, J. X. & Terrones, M. Cutting


single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. _Small_ 1, 953–956 (2005). CAS  Google Scholar  * Yuzvinsky, T. D., Fennimore, A. M.,


Mickelson, W., Esquivias, C. & Zettl, A. Precision cutting of nanotubes with a low-energy electron beam. _Appl. Phys. Lett._ 86, 053109 (2005). Google Scholar  * Yoon, M. et al. Zipper


mechanism of nanotube fusion: theory and experiment. _Phys. Rev. Lett._ 92, 075504 (2004). Google Scholar  * Suzuki, M., Ishibashi, K., Toratani, K., Tsuya, D. & Aoyagi, Y. Tunnel


barrier formation using argon-ion irradiation and single quantum dots in multiwall carbon nanotubes. _Appl. Phys. Lett._ 81, 2273–2275 (2002). CAS  Google Scholar  * Maehashi, K. et al.


Formation of single quantum dot in single-walled carbon nanotube channel using focused-ion-beam technique. _Appl. Phys. Lett._ 90, 023103 (2007). Google Scholar  * Ishibashi, K., Tsuya, D.,


Suzuki, M. & Aoyagi, Y. Fabrication of a single-electron inverter in multiwall carbon nanotubes. _Appl. Phys. Lett._ 82, 3307–3309 (2003). CAS  Google Scholar  * Mikó, C. et al. Effect


of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes. _Appl. Phys. Lett._ 83, 4622–4624 (2003). Google Scholar  * Kim, H. M. et al.


Morphological change of multiwalled carbon nanotubes through high-energy (MeV) ion irradiation. _J. Appl. Phys._ 97, 026103 (2005). Google Scholar  * Schittenhelm, H. et al. Synthesis and


characterization of single-wall carbon nanotube amorphous diamond thin-film composites. _Appl. Phys. Lett._ 81, 2097–2099 (2002). CAS  Google Scholar  * Kumar, A. et al. Synthesis of


confined electrically conducting carbon nanowires by heavy ion irradiation of fullerene thin film. _J. Appl. Phys._ 101, 014308 (2007). Google Scholar  * Kumar, A., Avasthi, D. K., Pivin, J.


C., Tripathi, A. & Singh, F. Ferromagnetism induced by heavy-ion irradiaiton in fullerene films. _Phys. Rev. B_ 74, 153409 (2006). Google Scholar  * Basiuk, V. A., Kobayashi, K.,


Negishi, T. K. Y., Basiuk, E. V. & Saniger-Blesa, J. M., Irradiation of single-walled carbon nanotubes with high-energy protons. _Nano Lett._ 2, 789–791 (2002). CAS  Google Scholar  *


Neupane, P. P., Manasreh, M. O., Weaver, B. D., Landi, B. J. & Raffaelle, R. P. Proton irradiation effect on single-wall carbon nanotubes in a poly(3-octylthiophene) matrix. _Appl. Phys.


Lett._ 86, 221908 (2005). Google Scholar  * Jang, I., Sinnott, S. B., Danailov, D. & Keblinski, P. Molecular dynamics simulation study of carbon nanotubes welding under electron beam


irradiation. _Nano Lett._ 4, 109–114 (2004). CAS  Google Scholar  * Krasheninnikov, A. V., Nordlund, K., Keinonen, J. & Banhart, F. Ion-irradiation induced welding of carbon nanotubes.


_Phys. Rev. B_ 66, 245403 (2002). Google Scholar  * Luzzi, D. E. & Smith, B. W. Carbon cage structures in single wall carbon nanotubes: a new class of materials. _Carbon_ 38, 1751–1756


(2000). CAS  Google Scholar  * Hernández, E. et al. Fullerene coalescence in nanopeapods: a path to novel tubular carbon. _Nano Lett._ 3, 1037–1042 (2003). Google Scholar  * Sun, L.,


Rodríguez-Manzo, J. A. & Banhart, F., Elastic deformation of nanometer-sized metal crystals in graphitic shells. _Appl. Phys. Lett._ 89, 263104 (2006). Google Scholar  * Li, J. X. &


Banhart, F. The deformation of single, nanometer-sized metal crystals in graphitic shells. _Adv. Mater._ 17, 1539–1542 (2005). CAS  Google Scholar  * Banhart, F., Hernández, E. &


Terrones, M. Extreme superheating and supercooling of encapsulated metals in fullerene-like shells. _Phys. Rev. Lett._ 90, 185502 (2003). CAS  Google Scholar  * Zhang, S. et al. Mechanics of


defects in carbon nanotubes: atomistic and multiscale simulations. _Phys. Rev. B_ 71, 115403 (2005). Google Scholar  * Dumitrica, T., Hua, M. & Yakobson, B. I. Symmetry-, time-, and


temperature-dependent strength of carbon nanotubes. _Proc. Natl Acad. Sci. USA_ 103, 6105–6109 (2006). CAS  Google Scholar  * Åström, J. A., Krasheninnikov, A. V. & Nordlund, K. Carbon


nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model. _Phys. Rev. Lett._ 93, 215503 (2004). Google Scholar  * Skákalová, V., Woo, Y., Osváth,


Z., Biró, L. P. & Roth, S. Electron transport in Ar-irradiated single wall carbon nanotubes. _Phys. Status Solidi B_ 243, 3346–3350 (2006). Google Scholar  * Krasheninnikov, A. V.


Predicted scanning microscopy images of carbon nanotubes with atomic vacancies. _Solid State Commun._ 118, 361–365 (2001). CAS  Google Scholar  * Krasheninnikov, A. V., Nordlund, K., Sirviö,


M., Salonen, E. & Keinonen, J. Formation of ion irradiation-induced atomic-scale defects on walls of carbon nanotubes. _Phys. Rev. B_ 63, 245405 (2001). Google Scholar  * Makarova, T.


& Palacio, F. (eds) _Carbon Based Magnetism_ (Elsevier, Amsterdam, 2006). Google Scholar  * Andriotis, A. N., Menon, M., Sheetz, R. M. & Chernozatonskii, L. Magnetic properties of


C60 polymers. _Phys. Rev. Lett._ 90, 026801 (2003). Google Scholar  * Chan, J. A., Montanari, B., Gale, J. D., Taylor, S. M. B. J. W. & Harrison, N. M. Magnetic properties of polymerized


C60: the influence of defects and hydrogen. _Phys. Rev. B_ 70, 041403(R) (2004). Google Scholar  * Zaiser, M. & Banhart, F. Radiation-induced transformation of graphite to diamond.


_Phys. Rev. Lett._ 79, 3680–3683 (1997). CAS  Google Scholar  * Lyutovich, Y. & Banhart, F. Low-pressure transformation of graphite to diamond under irradiation. _Appl. Phys. Lett._ 74,


659–660 (1999). CAS  Google Scholar  * Zaiser, M., Lyutovich, Y. & Banhart, F., Irradiation-induced transformation of graphite to diamond: a quantitative study. _Phys. Rev. B_ 62,


3058–3064 (2000). CAS  Google Scholar  * Terrones, M. & Terrones, H. The role of defects in graphitic structures. _Fullerene Sci. Technol._ 4, 517–522 (1996). CAS  Google Scholar  *


Rodríguez-Manzo, J. A. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. _Nature Nanotechnol._ 2, 307–311 (2007). Google Scholar  *


Stolojan, V., Tison, Y., Chen, G. Y. & Silva, R. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. _Nano Lett._ 6, 1837–1841 (2006). CAS  Google


Scholar  * Golberg, D. & Bando, Y. Electron irradiation-induced solid state phase transformations: application to the study of fullerenes and nanotubes in the B-C-N system. _Recent Res.


Dev. Appl. Phys._ 2, 1–14 (1999). CAS  Google Scholar  * Zobelli, A. et al. Defective structure of BN nanotubes: from single vacancies to dislocation lines. _Nano Lett._ 6, 1955–1960 (2006).


CAS  Google Scholar  * Xu, S. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. _Small_ 1, 1221–1229 (2005). CAS  Google


Scholar  * Zhan, J., Bando, Y., Hu, J. & Golberg, D. Nanofabrication of ZnO nanowires. _Appl. Phys. Lett._ 89, 243111 (2006). Google Scholar  * Castro, M., Cuerno, R., Vázquez, L. &


Gago, R. Self-organized ordering of nanostructures produced by ion-beam sputtering. _Phys. Rev. Lett._ 94, 016102 (2005). Google Scholar  * Mohanta, S. K., Sonia, R. K., Tripathy, S. &


Chua, S. J. Ordered InP nanostructures fabricated by Ar-ion irradiation. _Appl. Phys. Lett._ 88, 043101 (2006). Google Scholar  * Kluth, P. et al. Disorder and cluster formation during ion


irradiation of Au nanoparticles in SiO2 . _Phys. Rev. B_ 74, 014202 (2006). Google Scholar  * McEuen, P. L. Carbon-based electronics. _Nature_ 393, 15–17 (1998). CAS  Google Scholar  *


Miyamoto, Y., Berber, S., Yoon, M., Rubio, A. & Tománek, D. Can photo excitations heal defects in carbon nanotubes? _Chem. Phys. Lett._ 392, 209–213 (2004). CAS  Google Scholar  *


Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Carbon nanotubes as masks against ion irradiation: an insight from atomistic simulations. _Appl. Phys. Lett._ 81, 1101–1103 (2002). CAS


  Google Scholar  * Wang, Y.-N. & Mišković, Z. L. Interactions of fast ions with carbon nanotubes: self-energy and stopping power. _Phys. Rev. A_ 69, 022901 (2004). Google Scholar  *


Ziegler, J. F., Biersack, J. P. & Littmark, U. _The Stopping and Range of Ions in Matter_ (Pergamon, New York, 1985). Google Scholar  * Banhart, F. Formation and transformation of carbon


nanoparticles under electron irradiation. _Phil. Trans. R. Soc. Lond. A_ 362, 2205–2222 (2004). CAS  Google Scholar  * Salonen, E., Krasheninnikov, A. V. & Nordlund, K. Beam


interactions with materials and atoms. _Nucl. Instrum. Meth. B_ 193, 603–608 (2002). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank K. Nordlund, R. M. Nieminen, J.


Keinonen, A. S. Foster, J. Kotakoski, M. Sammalkorpi, J. X. Li, L. Sun, J. A. Rodríguez-Manzo, M. Terrones, P. M. Ajayan and other co-workers for many years of collaboration. The preparation


of this review was supported by the Academy of Finland through the Centre of Excellence program. Support from the DAAD and ETC (D05/51651) is gratefully acknowledged. AUTHOR INFORMATION


Author notes * F. Banhart Present address: Present address: Institut de Physique et Chimie des Matériaux de Strasbourh, Université de Strasbourg, 23 rue de loess, 67034 Strasbourg, France,


AUTHORS AND AFFILIATIONS * Accelerator Laboratory, P.O. Box 43, FI-00014 University of Helsinki, Finland A. V. Krasheninnikov * Laboratory of Physics, P.O. Box 1100, FI-02015 Helsinki


University of Technology, Finland A. V. Krasheninnikov * Institut für Physikalische Chemie, Universität Mainz, Mainz, D-55099, Germany F. Banhart Authors * A. V. Krasheninnikov View author


publications You can also search for this author inPubMed Google Scholar * F. Banhart View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Krasheninnikov, A., Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. _Nature


Mater_ 6, 723–733 (2007). https://doi.org/10.1038/nmat1996 Download citation * Issue Date: October 2007 * DOI: https://doi.org/10.1038/nmat1996 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative