Calcium-pump inhibitors induce functional surface expression of δf508-cftr protein in cystic fibrosis epithelial cells

feature-image

Play all audios:

Loading...

ABSTRACT The most common mutation in cystic fibrosis, ΔF508, results in a cystic fibrosis transmembrane conductance regulator (CFTR) protein that is retained in the endoplasmic reticulum


(ER). Retention is dependent upon chaperone proteins, many of which require Ca++ for optimal activity. Interfering with chaperone activity by depleting ER Ca++ stores might allow functional


ΔF508-CFTR to reach the cell surface. We exposed several cystic fibrosis cell lines to the ER Ca++ pump inhibitor thapsigargin and evaluated surface expression of ΔF508-CFTR. Treatment


released ER-retained ΔF508-CFTR to the plasma membrane, where it functioned effectively as a Cl− channel. Treatment with aerosolized calcium-pump inhibitors reversed the nasal epithelial


potential defect observed in a mouse model of ΔF508-CFTR expression. Thus, ER calcium-pump inhibitors represent a potential target for correcting the cystic fibrosis defect. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12


print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS SARS-COV-2 VIRAL ENTRY AND REPLICATION IS IMPAIRED IN CYSTIC FIBROSIS AIRWAYS DUE TO ACE2 DOWNREGULATION Article Open access 10 January 2023 SFPQ RESCUES


F508DEL-CFTR EXPRESSION AND FUNCTION IN CYSTIC FIBROSIS BRONCHIAL EPITHELIAL CELLS Article Open access 17 August 2021 MACROCYCLE-STABILIZATION OF ITS INTERACTION WITH 14-3-3 INCREASES PLASMA


MEMBRANE LOCALIZATION AND ACTIVITY OF CFTR Article Open access 23 June 2022 REFERENCES * Davis, P.B., Drumm, M. & Konstan, M.W. Cystic fibrosis. _Am. J. Respir. Crit. Care Med._ 154,


1229–1256 (1996). Article  CAS  Google Scholar  * Sheppard, D.N. & Welsh, M.J. Structure and function of the CFTR chloride channel. _Physiol. Rev._ 79, Suppl. S23–S45 (1999). Article 


CAS  Google Scholar  * Thomas, P.J., Shenbagamurthi, P., Sondek, J., Hullihen, J.M. & Pedersen, P.L. The cystic fibrosis transmembrane conductance regulator: Effects of the most common


cystic fibrosis-causing mutation on the secondary structure and the stability of a synthetic peptide. _J. Biol. Chem._ 267, 5727–5730 (1992). CAS  PubMed  Google Scholar  * Cheng, S.H. et


al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. _Cell_ 63, 827–834 (1990). Article  CAS  Google Scholar  * Ward, C.L., Omura, S.


& Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. _Cell_ 83, 122–127 (1995). Article  Google Scholar  * Egan, M.E., Schwiebert, E.M. & Guggino, W.B.


Differential expression of outwardly rectifying chloride channels and CFTR induced by low temperature in CF airway epithelial cells. _Am. J. Physiol._ 268, C243–C251 (1995). Article  CAS 


Google Scholar  * Rubenstein, R.C., Egan, M.E. & Zeitlin, P.L. _In vitro_ pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis


epithelial cells containing ΔF508-CFTR. _J. Clin. Invest._ 100, 2457–2465 (1997). Article  CAS  Google Scholar  * Hwang, T.C., Wang, F., Yang, I.C. & Reenstra, W.W. Genistein potentiates


wild-type and ΔF508-CFTR channel activity. _Am. J. Physiol._ 273, C988–C998 (1997). Article  CAS  Google Scholar  * Dalemans, W. et al. Altered chloride ion channel kinetics associated with


the ΔF508 cystic fibrosis mutation. _Nature_ 354, 526–528 (1991). Article  CAS  Google Scholar  * Maitra, R., Shaw, C.M., Stanton, B.A. & Hamilton, J.W. Increased functional cell


surface expression of CFTR and ΔF508-CFTR by the anthracycline doxorubicin. _Am. J. Physiol._ 280, C1031C1037 (2001). * Nigam, S.K. et al. A set of endoplasmic reticulum proteins possessing


properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. _J. Biol. Chem._ 269, 1744–1749 (1994). CAS  PubMed  Google Scholar  *


Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: Quality control in the secretory pathway. _Science_ 286, 1882–1888 (1999). Article  CAS  Google Scholar  * Montero, M. et


al. Ca homeostasis in the endoplasmic reticulum: Coexistence of high and low [Ca] subcompartments in intact HeLa cells. _J. Cell Biol._ 139, 601–611 (1997). Article  CAS  Google Scholar  *


Zeitlin, P.L. et al. A cystic fibrosis bronchial epithelial cell line: Immortalization by adeno-12-SV40 infection. _Am. J. Resp. Cell. Mol. Biol._ 4, 313–319 (1991). Article  CAS  Google


Scholar  * Kunzelman, K. et al. An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the DF508-CFTR mutation. _Am. J. Resp. Cell. Mol. Biol._ 8, 522–529 (1993).


Article  Google Scholar  * Haws, C.M. et al. ΔF508-CFTR channels: Kinetics, activation by forskolin, and potentiation by xanthines. _Am. J. Physiol._ 270, C1544–C1555 (1996). Article  CAS 


Google Scholar  * Schultz, B.D. et al. Glibenclamide blockade of CFTR chloride channels. _Am. J. Physiol._ 271, L192–L200 (1996). CAS  PubMed  Google Scholar  * Verkman, A.S. Development and


biological applications of chloride-sensitive fluorescent indicators. _Am. J. Physiol._ 259, C375–C388 (1990). Article  CAS  Google Scholar  * Zhang, Z.R., Zeltwanger, S. & McCarty,


N.A. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. _J. Membr. Biol._ 175, 35–52 (2000). Article  CAS  Google Scholar  * Schoumacher, R.A. et al. A cystic


fibrosis pancreatic adenocarcinoma cell line. _Proc. Natl. Acad. Sci. USA_ 87, 4012–4016 (1990). Article  CAS  Google Scholar  * Grubb, B., Lazarowski, E., Knowles, M. & Boucher, R.C.


Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. _Am. J. Resp. Cell. Mol. Biol._ 8, 454–460 (1993). Article  CAS  Google Scholar  *


Choudhury, P., Liu, Y., Bick, R.J. & Sifers, R.N. Intracellular association between UDP-glucose:glycoprotein glucosyltransferase and an incompletely folded variant of α1-antitrypsin. _J.


Biol. Chem._ 272, 13446–13451 (1997). Article  CAS  Google Scholar  * Shachar, I., Rabinovich, E., Kerem, A. & Bar-Nun, S. Thiol-reducing agents and calcium perturbants alter


intracellular sorting of immunoglobulin M. _J. Biol. Chem._ 269, 27344–27350 (1994). CAS  PubMed  Google Scholar  * Tsien, R.Y. New calcium indicators and buffers with high selectivity


against magnesium and protons: Design, synthesis and properties of prototype structures. _Biochem. J._ 19, 2396–2404 (1980). Article  CAS  Google Scholar  * Mason, M.J., Garcia-Rodriguez, C.


& Grinstein, S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2, 5-di-(tert-butyl)-1,


4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. _J. Biol. Chem._ 266, 20856–20862 (1991). CAS  PubMed  Google Scholar  * Booth, C. & Koch, G.L.E. Perturbation of


cellular calcium induces secretion of luminal ER proteins. _Cell_ 59, 729–737 (1989). Article  CAS  Google Scholar  * Lee, A.S. The glucose-regulated proteins: Stress induction and clinical


applications. _TIBS_ 26, 504–10 (2001). CAS  PubMed  Google Scholar  * Llewellyn, D.H., Kendall, J.M., Sheikh, F.N. & Campbell, A.K. Induction of calreticulin expression in HeLa cells by


depletion of the endoplasmic reticulum Ca++ store and inhibition of N-linked glycosylation. _Biochem. J._ 318, 555–560 (1996). Article  CAS  Google Scholar  * Zeiher, B.G. et al. A mouse


model for the ΔF508 allele of cystic fibrosis. _J. Clin. Invest._ 96, 2051–2064 (1995). Article  CAS  Google Scholar  * Grubb, B.R., Vick, R.N. & Boucher, R.C. Hyperabsorption of Na+ and


raised Ca(2+)-mediated Cl− secretion in nasal epithelia of CF mice. _Am. J. Physiol._ 266, C1478–C1483 (1994). Article  CAS  Google Scholar  * Zeitlin, P.L. Novel pharmacologic therapies


for cystic fibrosis. _J. Clin. Invest._ 103, 447–452 (1999). Article  CAS  Google Scholar  * Rosenfeld, M.A. & Collins, F.S. Gene therapy for cystic fibrosis. _Chest._ 109, 241–52


(1996). Article  CAS  Google Scholar  * Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J. & Kopito, R.R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis


mutation. _J. Biol. Chem._ 271, 635–638 (1996). Article  CAS  Google Scholar  * Brown, C.R., Hong-Brown, L.Q. & Welch, W.J. Correcting temperature-sensitive protein folding defects. _J.


Clin. Invest._ 99, 1432–1444 (1997). Article  CAS  Google Scholar  * Pind, S., Riordan, J.R. & Williams, D.B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in


the biogenesis of the cystic fibrosis transmembrane conductance regulator. _J. Biol. Chem._ 269, 12784–12788 (1994). CAS  PubMed  Google Scholar  * Meacham, G.C. et al. The Hdj-2/HSC70


chaperone pair facilitates early steps in CFTR biogenesis. _EMBO J._ 18, 1492–1505 (1999). Article  CAS  Google Scholar  * Lodish, H.F. & Kong, N. Perturbation of cellular calcium blocks


exit of secretory proteins from the rough endoplasmic reticulum. _J. Biol. Chem._ 265, 10893–10899 (1990). CAS  PubMed  Google Scholar  * Wong, W.L., Brostrom, M.A., Kuznetsov, G.,


Gmitter-Yellen, D. & Brostrom, C.O. Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. _Biochem. J._ 289, 71–79 (1993). Article  CAS  Google


Scholar  * Hofer, A.M. & Machen, T.E. Technique for _in situ_ measurement of calcium in intracellular inositol 1,4,5-triphosphate-sensitive stores using the fluorescent indicator


mag-fura-2. _Proc. Nat. Acad. Sci. USA_ 90, 2598–2602 (1993). Article  CAS  Google Scholar  * Christensen, S.B., Andersen, A., Poulsen, J.C.J. & Treiman, M. Derivatives of thapsigargin


as probes of its binding site on endoplasmic reticulum Ca-ATPase: Stereoselectivity and important functional groups. _FEBS Lett._ 335, 345–348 (1993). Article  CAS  Google Scholar  * Tsien,


R.Y., Pozzan, T. & Rink, T.J. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. _J. Cell Biol._ 94,


325–334 (1982). Article  CAS  Google Scholar  * Chao, A., Kouyama, K., Heist, E., Dong, Y. & Gardner, P. Calcium- and CaMKII-dependent chloride secretion induced by the microsomal


Ca-ATPase inhibitor 2,5-di-(_tert_-butyl)-1,4-hydroquinone in cystic fibrosis pancreatic epithelial cells. _J. Clin. Invest._ 96, 1794–1801 (1995). Article  CAS  Google Scholar  * Crawford,


I. et al. Immunocytochemical localization of THE cystic fibrosis gene product CFTR. _Proc. Nat. Acad. Sci. USA_ 88, 9262–9266 (1991). Article  CAS  Google Scholar  * Gottardi, C.J. &


Caplan, M.J. An ion transporting ATPase encodes multiple apical localization signals. _J. Cell Biol._ 121, 283–293 (1993). Article  CAS  Google Scholar  * Biemesderfer, D., Dekan, G.,


Aronson, P.S. & Farquhar, M.G. Assembly of distinctive coated pit and microvillar microdomains in the renal brush border. _Am. J. Physiol._ 262, F55–F67 (1992). CAS  PubMed  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank M. Drumm for ΔF508-CFTR mice; W. Guggino, M. Blaustein, P. Aronson, J. Burger, G. Fyfe, G. Giebisch, G. Haddad, P. De Camilli, K.


Bottomly, R. Lifton and members of the Caplan lab group for suggestions and readings of the manuscript; S.A. Mentone for help with electron microscopy; V. Rajendran and M.W. Nason for


technical support; and M. Kashgarian for assistance in evaluating histopathologic specimens. This work was supported by the Alyward Family/Pitney Bowes Gift Fund, Panacea Pharmaceuticals


(M.E.E. and M.J.C.) and by NIH grants DK53428 (to M.E.E.), DK50230 (to J.G.), HD32573 (to J.G.), GM42136 (to M.J.C.) and DK17433 (to J.G. and M.J.C.). AUTHOR INFORMATION Author notes *


Judith Glöckner-Pagel and Catherine A. Ambrose: J.G.-P. and C.A.A. contributed equally to this study. AUTHORS AND AFFILIATIONS * Department of Pediatrics, Yale University School of Medicine,


New Haven, Connecticut, USA Marie E. Egan, Catherine A. Ambrose, Paula A. Cahill, Lamiko Pappoe & Naomi Balamuth * Department of Surgery, Yale University School of Medicine, New Haven,


Connecticut, USA John Geibel * Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA Marie E. Egan, Judith Glöckner-Pagel, Edward


Cho, Susan Canny, Carsten A. Wagner, John Geibel & Michael J. Caplan Authors * Marie E. Egan View author publications You can also search for this author inPubMed Google Scholar * Judith


Glöckner-Pagel View author publications You can also search for this author inPubMed Google Scholar * Catherine A. Ambrose View author publications You can also search for this author


inPubMed Google Scholar * Paula A. Cahill View author publications You can also search for this author inPubMed Google Scholar * Lamiko Pappoe View author publications You can also search


for this author inPubMed Google Scholar * Naomi Balamuth View author publications You can also search for this author inPubMed Google Scholar * Edward Cho View author publications You can


also search for this author inPubMed Google Scholar * Susan Canny View author publications You can also search for this author inPubMed Google Scholar * Carsten A. Wagner View author


publications You can also search for this author inPubMed Google Scholar * John Geibel View author publications You can also search for this author inPubMed Google Scholar * Michael J.


Caplan View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Michael J. Caplan. ETHICS DECLARATIONS COMPETING INTERESTS


These studies were supported to a small extent by a sponsored research agreement between Yale University and Panacea Pharmaceuticals, a small biotech firm that has licensed this technology


from Yale University. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Egan, M., Glöckner-Pagel, J., Ambrose, C. _et al._ Calcium-pump inhibitors induce


functional surface expression of ΔF508-CFTR protein in cystic fibrosis epithelial cells. _Nat Med_ 8, 485–492 (2002). https://doi.org/10.1038/nm0502-485 Download citation * Received: 13


March 2002 * Accepted: 29 March 2002 * Issue Date: 01 May 2002 * DOI: https://doi.org/10.1038/nm0502-485 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative