Evidence for the involvement of endotheliai cell integrin αvβ3 in the disruption of the tumor vascuiature induced by tnf and ifn-γ


Play all audios:

Loading...

ABSTRACT Administration of tumor necrosis factor (TNF) and γ interferon (IFN-γ) to melanoma patients causes selective disruption of the tumor vascuiature but the mechanism of this disruption


is unknown. Here we report that exposure of human endotheliai cells to TNF and IFN-γ results in a reduced activation of integrin αVβ3, an adhesion receptor that plays a key role in tumor


angiogenesis, leading to a decreased αVβ3-dependent endotheliai cell adhesion and survival. Detachment and apoptosis of angiogenic endotheliai cells was demonstrated in vivo in melanoma


metastases of patients treated with TNF and IFN-γ. These results implicate integrin αVβ3 in the anti-vascular activity of TNF and IFN-γ and demonstrate a new mechanism by which cytokines


control cell adhesion. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS REFRACTORINESS OF STING THERAPY IS RELIEVED BY AKT INHIBITOR THROUGH EFFECTIVE VASCULAR DISRUPTION IN TUMOUR Article Open


access 20 July 2021 EXTRACELLULAR VIMENTIN MIMICS VEGF AND IS A TARGET FOR ANTI-ANGIOGENIC IMMUNOTHERAPY Article Open access 23 May 2022 EXPLORING THE CROSSTALK BETWEEN ENDOTHELIAL CELLS,


IMMUNE CELLS, AND IMMUNE CHECKPOINTS IN THE TUMOR MICROENVIRONMENT: NEW INSIGHTS AND THERAPEUTIC IMPLICATIONS Article Open access 04 September 2023 REFERENCES * Carswell, E.A. _et al_. An


endotoxin-induced serum factor that causes necrosis of tumors. _Proc. Natl. Acad. Sci. USA_ 72, 3666–3670 (1975). Article  CAS  Google Scholar  * Liénard, D., Ewalenko, P., Delmotte, J.,


Renard, N. & Lejeune, F.J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and


sarcoma, _J. Clin. Oncol._ 10, 52–60 (1992). Article  Google Scholar  * Lejeune, F.J. High dose recombinant tumour necrosis factor (rTNF alpha) administered by isolation perfusion for


advanced tumours of the limbs: a model for biochemotherapy of cancer, _Eur. J. Cancer_ 6, 1009–1016 (1995). Article  Google Scholar  * Lienard, D. _et al_. Isolated perfusion of the limb


with high-dose tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-γ) and melphalan for melanoma stage III. Results of a multi-centre pilot study. _Melanoma Res._ 4, Suppl. 1,


21–26 (1994). PubMed  Google Scholar  * Renard, N. _et al_. von Willenbrand Factor release and platelet aggregation in human melanoma after perfusion with TNFα. _J. Pathol._ 176, 279–287


(1995). Article  CAS  Google Scholar  * Renard, N. _et al_. Early endothelium activation and polymorphonuclear cell invasion preceed specific necrosis of human melanoma and sarcoma treated


by intravascular high dose of Tumor Necrosis Factor alpha. _Int. J. Cancer_ 57, 656–663 (1994). Article  CAS  Google Scholar  * Enenstein, I. & Kramer, R.H. Confocal microscopic analysis


of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. _J. Invest. Dermatol._ 103, 381–386 (1994). Article  CAS  Google Scholar  * Brooks, P.C., Clark,


R.A. & Cheresh, D.A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. _Science_ 264, 569–571 (1994). Article  CAS  Google Scholar  * Max, R. _et al_. Immunohistochemical


analysis of integrin alpha v beta 3 expression on tumor-associated vessels of human carcinomas. _Int. J. Cancer_ 71, 320–324 (1997). Article  CAS  Google Scholar  * Brooks, P.C. _et al_.


Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. _Cell_ 79, 1157–1164 (1994). Article  CAS  Google Scholar  * Brooks, P.C. _et


al_. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. _J. Clin. Invest._ 96, 1815–1822 (1995). Article  CAS  Google Scholar  * Stromblad, S.,


Becker, I.C., M, Brooks, P.C. & Cheresh, D.A. Suppression of p53 activity and p21 WAF1 /CIP1 expression by vascular cell integrin alpha v beta 3 during angiogenesis. _J. Clin. Invest._


98, 426–133 (1996). Article  CAS  Google Scholar  * Defilippi, P. _et al_. Tumor necrosis factor alpha and interferon gamma modulate the expression of the vitronectin receptor (integrin beta


3) in human endothelial cells. _J. Biol. Chem._ 266, 7638–7645 (1991). CAS  PubMed  Google Scholar  * Schwartz, M.A., Schaller, M.D. & Ginsberg, M.H. Integrins: emerging paradigms of


signal transduction. _Ann. Rev. Cell Dev. Biol._ 11, 549–599 (1995). Article  CAS  Google Scholar  * Clark, E.A. & Brugge, J.S. Integrins and signal transduction pathways: the road


taken. _Science_ 268, 233–239 (1995). Article  CAS  Google Scholar  * Nobes, C.D. .& Hall, A. Rho, rac, and cdc42 CTPases regulate the assembly of multi-molecular focal complexes


associated with actin stress fibers, lamellipodia, and filopodia. _Cell_ 81, 53–62 (1995). Article  CAS  Google Scholar  * Smith, J.W., Piotrowicz, R.S. & Mathis, D. A mechanism for


divalent cation regulation of beta 3-integrins. _J. Biol. Chem._ 269, 960–967 (1994). CAS  PubMed  Google Scholar  * Honda, S. _et al_. Topography of ligand-induced binding sites, including


a novel cation-sensitive epitope (APS) at the amino terminus, of the human integrin beta 3 subunit. _J. Biol. Chem._ 270, 11947–11954 (1995). Article  CAS  Google Scholar  * Pelletier, A.J.,


Kunicki, T. & quaranta, V. Activation of the integrin alpha V beta 3 involves a discrete cation-binding site that regulates conformation. _J. Biol. Chem._ 271, 1364–1370 (1996). Article


  CAS  Google Scholar  * Meredith, J., Jr, Fazeli, B. & Schwartz, M.A. The extracellular matrix as a cell survival factor. _Mol. Biol. Cell_ 4, 953–961 (1993). Article  CAS  Google


Scholar  * Re, F. _et al_. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. _J. Cell Biol._ 127, 537–546 (1994). Article  CAS  Google


Scholar  * Frisch, S.M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. _J. Cell Biol._ 124, 619–626 (1994). Article  CAS  Google Scholar  * Folkman,


J. Angiogenesis in cancer, vascular, rheumatoid and other disease. _Nature Med._ 1, 27–30 (1995). Article  CAS  Google Scholar  * Lejeune, F. _et al_. Rationale for using TNF alpha and


chemotherapy in regional therapy of melanoma. _J. Cell. Biochem._ 56, 52–61 (1994). Article  CAS  Google Scholar  * Brooks, P.C. _et al_. Localization of matrix metalloproteinase MMP-2 to


the surface of invasive cells by interaction with integrin alpha v beta 3. _Cell_ 85, 683–693 (1996). Article  CAS  Google Scholar  * Stromblad, S. & Cheresh, D.A. Cell adhesion and


angiogenesis. _Trends Cell Biol._ 6, 462–468 (1996). Article  CAS  Google Scholar  * Campbell, J.J., Qin, S., Bacon, K.B., Mackay, C.R. & Butcher, E.C. Biology of chemokine and classical


chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. _J. Cell Biol._ 134, 255–266 (1996). Article  CAS  Google


Scholar  * Vassboth, F.S., Havnen, O.K., Heldin, C.H. & Holmsen, H. Negative feedback regulation of human platelets via autocrine activation of the platelet derived growth factor alpha


receptor. _J. Biol. Chem._ 269, 13874–13879 (1994). Google Scholar  * Dahl, S.C. & Crabel, L.B. Integrin phosphorylation is modulated during the differentiation of F-9 teratocarcinoma


stem cells. _J. Cell Biol._ 108, 183–190 (1989). Article  CAS  Google Scholar  * Adams, J.C. & Watt, F.M. Changes in keratinocyte adhesion during terminal differentiation: reduction in


fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. _Cell_ 63, 425–435 (1990). Article  CAS  Google Scholar  * Neugebauer, K.M. & Reichardt, L.F.


Cell-surface regulation of beta 1-integrin activity on developing retinal neurons. _Nature_ 350, 68–71 (1991). Article  CAS  Google Scholar  * Boettiger, D. _et al_. Regulation of integrin


alpha 5 beta 1 affinity during myogenic differentiation. _Dev. Biol._ 169, 261–272 (1995). Article  CAS  Google Scholar  * Hughes, P.E. _et al_. Suppression of integrin activation: a novel


function of a Ras/Raf-initiated MAP kinase pathway. _Cell_ 88, 521–530 (1997). Article  CAS  Google Scholar  * Tominaga, T. _et al_. Inhibition of PMA-induced, LFA-1-dependent lymphocyte


aggregation by ADP ribosyiation of the small molecular weight CTP binding protein, rho. _J. Cell Biol._ 120, 1529–1537 (1993). Article  CAS  Google Scholar  * Saklatvala, J., Rawlinson,


L.M., Marshall, C.J. & Kracht, M. Interleukin 1 and tumour necrosis factor activate the mitogen-activated protein (MAP) kinase kinase in cultured cells. _Febs Letters_ 334, 189–192


(1993). Article  CAS  Google Scholar  * Belka, C. _et al_. Tumor necrosis factor (TNF)-alpha activates c-raf-1 kinase via the p55 TNF receptor engaging neutral sphingomyelinase. _Embo J._


14, 1156–1165 (1995). Article  CAS  Google Scholar  * Xia, K. _et al_. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21 ras-dependent manner. _Proc. Natl. Acad. Sci.


U.S.A._ 93, 11681–11686 (1996). Article  CAS  Google Scholar  * Doukas, J. & Pober, J.S. IFN-γ enhances endothelial activation induced by tumor necrosis factor but not IL-1. _J.


Immunol._ 145, 1727–1733 (1990). CAS  PubMed  Google Scholar  * Marfaing-Koka, A. _et al_. Regulation of the production of the RANTES chemokine by endothelial cells. Synergistic induction by


IFN-γ plus TNF-a and inhibition by IL-4 and IL-13. _J. Immunol._ 154, 1870–1878 (1995). CAS  PubMed  Google Scholar  * Pandita, R., Pocsik, E. & Aggarwal, B.B. Interferon-gamma induces


cell surface expression for both types of tumor necrosis factor receptors. _Febs Letters_ 312, 87–90 (1992). Article  CAS  Google Scholar  * Ohmori, Y. & Hamilton, T.A. The


interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-γ and TNF-alpha. _J. Immunol._ 154, 5235–5244 (1995). CAS 


PubMed  Google Scholar  * Johnson, D.R. & Pober, J.S. HLA class I heavy-chain gene promoter elements mediating synergy between tumor necrosis factor and interferons. _Molec. Cel. Biol._


14, 1322–1332 (1994). Article  CAS  Google Scholar  * Lejeune, F.J., Lienard, D., Schraffordt Koops, H., Kroon, B. & Eggermont, A.M.M. Treatment of in-transit melanoma metastases with


Tumor Necrosis Factor (TNF) and chemotherapy administered in isolated limb perfusion (ILP). _Melanoma Res._ 7, S48 (1997). Article  Google Scholar  * Dighe, A.S., Richards, E., Old, L.J.


& Schreiber, R.D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors. _Immunity_ 1, 447–456 (1994). Article  CAS  Google


Scholar  * Sato, T.N. _et al_. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. _Nature_ 376, 70–74 (1995). Article  CAS  Google Scholar  * Suri, C.


_et al_. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. _Cell_ 87, 1171–1180 (1996). Article  CAS  Google Scholar  * Maisonpierre, P.C. _et


al_. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. _Science_ 277, 55–60 (1997). Article  CAS  Google Scholar  * Spertini, O. _et al_. Leukocyte adhesion


molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. _J. Immunol._ 147, 2565–2573 (1991). CAS  PubMed  Google Scholar  * Gérain,


J., Lienard, D., Ewalenko, P. & Lejeune, F.J. High serum levels of TNF-alpha after its administration for isolation perfusion of the limb. _Cytokine_ 4, 585–591 (1992). Article  Google


Scholar  * Lahm, H. _et al_. Growth inhibition of human colorectal-carcinoma cells by inter-leukin-4 and expression of functional interleukin-4 receptors. _Int. J. Cancer_ 59, 440–147


(1994). Article  CAS  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Centre Pluridisciplinaire d'Oncologie (CPO), School of Medicine, University of


Lausanne, Centre Hospitalier Universitaire Vaudois, c/o ISREC, 155 Chemin des Boveresses, CH-1066, Epalinges, Switzerland Curzio Rüegg, Aysim Yilmaz, Grégory Bieler & Ferdy J. Lejeune *


Swiss Institute for Experimental Cancer Research (ISREC), 155 Chemin des Boveresses, CH-1066, Epalinges, Switzerland Jeannine Bamat * Institute of Pathology, School of Medicine, University


of Lausanne, CH-1011, Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland Pascal Chaubert Authors * Curzio Rüegg View author publications You can also search for this author inPubMed 


Google Scholar * Aysim Yilmaz View author publications You can also search for this author inPubMed Google Scholar * Grégory Bieler View author publications You can also search for this


author inPubMed Google Scholar * Jeannine Bamat View author publications You can also search for this author inPubMed Google Scholar * Pascal Chaubert View author publications You can also


search for this author inPubMed Google Scholar * Ferdy J. Lejeune View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Rüegg, C., Yilmaz, A., Bieler, G. _et al._ Evidence for the involvement of endotheliai cell integrin αVβ3 in the disruption of the tumor


vascuiature induced by TNF and IFN-γ. _Nat Med_ 4, 408–414 (1998). https://doi.org/10.1038/nm0498-408 Download citation * Received: 21 October 1997 * Accepted: 18 February 1998 * Issue Date:


01 April 1998 * DOI: https://doi.org/10.1038/nm0498-408 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative