Transcription factor ebf1 is essential for the maintenance of b cell identity and prevention of alternative fates in committed cells

feature-image

Play all audios:

Loading...

ABSTRACT The transcription factors EBF1 and Pax5 have been linked to activation of the B cell lineage program and irreversible loss of alternative lineage potential (commitment),


respectively. Here we conditionally deleted _Ebf1_ in committed pro-B cells after transfer into alymphoid mice. We found that those cells converted into innate lymphoid cells (ILCs) and T


cells with variable-diversity-joining (VDJ) rearrangements of loci encoding both B cell and T cell antigen receptors. As intermediates in lineage conversion, _Ebf1_-deficient CD19+ cells


expressing Pax5 and transcriptional regulators of the ILC and T cell fates were detectable. In particular, genes encoding the transcription factors Id2 and TCF-1 were bound and repressed by


EBF1. Thus, both EBF1 and Pax5 are required for B lineage commitment by repressing distinct and common determinants of alternative cell fates. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online


access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


AN ERG-DRIVEN TRANSCRIPTIONAL PROGRAM CONTROLS B CELL LYMPHOPOIESIS Article Open access 15 June 2020 THE IMMUNOGLOBULIN HEAVY CHAIN SUPER ENHANCER CONTROLS CLASS SWITCH RECOMBINATION IN


DEVELOPING B CELLS Article Open access 28 March 2024 A DOUBLE-NEGATIVE THYMOCYTE-SPECIFIC ENHANCER AUGMENTS NOTCH1 SIGNALING TO DIRECT EARLY T CELL PROGENITOR EXPANSION, LINEAGE RESTRICTION


AND Β-SELECTION Article 31 October 2022 ACCESSION CODES PRIMARY ACCESSIONS GENE EXPRESSION OMNIBUS * GSE46349 REFERENCED ACCESSIONS GENE EXPRESSION OMNIBUS * GSE15907 REFERENCES * Adolfsson,


J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. _Cell_ 121, 295–306 (2005). CAS 


PubMed  Google Scholar  * Mercer, E.M. et al. Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors. _Immunity_ 35,


413–425 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ng, S.Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore


Ikaros-dependent lymphoid priming in hematopoietic stem cells. _Immunity_ 30, 493–507 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Ichii, M. et al. Functional diversity of stem and


progenitor cells with B-lymphopoietic potential. _Immunol. Rev._ 237, 10–21 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Klose, C.S., Hoyler, T., Kiss, E.A., Tanriver, Y. &


Diefenbach, A. Transcriptional control of innate lymphocyte fate decisions. _Curr. Opin. Immunol._ 24, 290–296 (2012). CAS  PubMed  Google Scholar  * Igarashi, H., Gregory, S.C., Yokota, T.,


Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. _Immunity_ 17, 117–130 (2002). CAS  PubMed  Google Scholar  *


Inlay, M.A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. _Genes Dev._ 23, 2376–2381 (2009). CAS  PubMed


  PubMed Central  Google Scholar  * Mansson, R. et al. Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity. _Blood_ 115,


2601–2609 (2010). CAS  PubMed  Google Scholar  * Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. _Nat. Immunol._ 11,


635–643 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Mandel, E.M. & Grosschedl, R. Transcription control of early B cell differentiation. _Curr. Opin. Immunol._ 22, 161–167


(2010). CAS  PubMed  Google Scholar  * Mansson, R. et al. Positive intergenic feedback circuitry, involving EBF1 and FOXO1, orchestrates B-cell fate. _Proc. Natl. Acad. Sci. USA_ 109,


21028–21033 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. _Dev. Cell_ 7, 607–617


(2004). CAS  PubMed  Google Scholar  * Reynaud, D. et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. _Nat. Immunol._ 9, 927–936


(2008). CAS  PubMed  PubMed Central  Google Scholar  * Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in


the absence of E2A. _J. Exp. Med._ 199, 1689–1700 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Zandi, S. et al. Single-cell analysis of early B-lymphocyte development suggests


independent regulation of lineage specification and commitment in vivo. _Proc. Natl. Acad. Sci. USA_ 109, 15871–15876 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Cobaleda, C.


& Busslinger, M. Developmental plasticity of lymphocytes. _Curr. Opin. Immunol._ 20, 139–148 (2008). CAS  PubMed  Google Scholar  * Nutt, S.L. & Kee, B.L. The transcriptional


regulation of B cell lineage commitment. _Immunity_ 26, 715–725 (2007). CAS  PubMed  Google Scholar  * Rothenberg, E.V. T cell lineage commitment: identity and renunciation. _J. Immunol._


186, 6649–6655 (2011). CAS  PubMed  Google Scholar  * Welinder, E., Ahsberg, J. & Sigvardsson, M. B-lymphocyte commitment: identifying the point of no return. _Semin. Immunol._ 23,


335–340 (2011). CAS  PubMed  Google Scholar  * Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. _Science_ 297, 110–113


(2002). CAS  PubMed  Google Scholar  * Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. _Nature_ 401,


556–562 (1999). CAS  PubMed  Google Scholar  * Rolink, A.G., Nutt, S.L., Melchers, F. & Busslinger, M. Long-term _in vivo_ reconstitution of T-cell development by Pax5-deficient B-cell


progenitors. _Nature_ 401, 603–606 (1999). CAS  PubMed  Google Scholar  * Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to


uncommitted progenitors. _Nature_ 449, 473–477 (2007). CAS  PubMed  Google Scholar  * Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is


reversed in plasma cells. _Immunity_ 24, 269–281 (2006). CAS  PubMed  Google Scholar  * McManus, S. et al. The transcription factor Pax5 regulates its target genes by recruiting


chromatin-modifying proteins in committed B cells. _EMBO J._ 30, 2388–2404 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Decker, T. et al. Stepwise activation of enhancer and


promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. _Immunity_ 30, 508–520 (2009). CAS  PubMed  Google Scholar  * Roessler, S. et al. Distinct promoters mediate the


regulation of Ebf1 gene expression by interleukin-7 and Pax5. _Mol. Cell Biol._ 27, 579–594 (2007). CAS  PubMed  Google Scholar  * Pongubala, J.M. et al. Transcription factor EBF restricts


alternative lineage options and promotes B cell fate commitment independently of Pax5. _Nat. Immunol._ 9, 203–215 (2008). CAS  PubMed  Google Scholar  * Thal, M.A. et al. Ebf1-mediated


down-regulation of Id2 and Id3 is essential for specification of the B cell lineage. _Proc. Natl. Acad. Sci. USA_ 106, 552–557 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Treiber,


T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. _Immunity_ 32, 714–725 (2010). CAS  PubMed 


Google Scholar  * Lukin, K. et al. A dose-dependent role for EBF1 in repressing non-B-cell-specific genes. _Eur. J. Immunol._ 41, 1787–1793 (2011). CAS  PubMed  PubMed Central  Google


Scholar  * Györy, I. et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. _Genes Dev._ 26, 668–682 (2012). PubMed 


PubMed Central  Google Scholar  * Vilagos, B. et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. _J. Exp. Med._ 209, 775–792 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. _Genes Dev._ 18, 411–422 (2004). CAS 


PubMed  PubMed Central  Google Scholar  * Spits, H. et al. Innate lymphoid cells - a proposal for uniform nomenclature. _Nat. Rev. Immunol._ 13, 145–149 (2013). CAS  PubMed  Google Scholar 


* Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. _Nat. Immunol._ 9, 1091–1094 (2008). CAS  PubMed  Google Scholar  * Dengler,


H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. _Nat. Immunol._ 9, 1388–1398 (2008). CAS  PubMed  PubMed Central  Google


Scholar  * Kieslinger, M., Hiechinger, S., Dobreva, G., Consalez, G.G. & Grosschedl, R. Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous


manner. _Cell Stem Cell_ 7, 496–507 (2010). CAS  PubMed  Google Scholar  * Bussmann, L.H. et al. A robust and highly efficient immune cell reprogramming system. _Cell Stem Cell_ 5, 554–566


(2009). CAS  PubMed  Google Scholar  * Di Tullio, A. et al. CCAAT/enhancer binding protein alpha (C/EBPα)-induced transdifferentiation of pre-B cells into macrophages involves no overt


retrodifferentiation. _Proc. Natl. Acad. Sci. USA_ 108, 17016–17021 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Germar, K. et al. T-cell factor 1 is a gatekeeper for T-cell


specification in response to Notch signaling. _Proc. Natl. Acad. Sci. USA_ 108, 20060–20065 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Weber, B.N. et al. A critical role for


TCF-1 in T-lineage specification and differentiation. _Nature_ 476, 63–68 (2011). CAS  PubMed  PubMed Central  Google Scholar  * García-Ojeda, M.E. et al. GATA-3 promotes T-cell


specification by repressing B-cell potential in pro-T cells in mice. _Blood_ 121, 1749–1759 (2013). PubMed  Google Scholar  * Hoyler, T. et al. The transcription factor GATA-3 controls cell


fate and maintenance of type 2 innate lymphoid cells. _Immunity_ 37, 634–648 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Moro, K. et al. Innate production of TH2 cytokines by


adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. _Nature_ 463, 540–544 (2010). CAS  PubMed  Google Scholar  * Yokota, Y. et al. Development of peripheral lymphoid organs and natural


killer cells depends on the helix-loop-helix inhibitor Id2. _Nature_ 397, 702–706 (1999). CAS  PubMed  Google Scholar  * Sambandam, A. et al. Notch signaling controls the generation and


differentiation of early T lineage progenitors. _Nat. Immunol._ 6, 663–670 (2005). CAS  PubMed  Google Scholar  * Yamamoto, N. et al. Role of Deltex-1 as a transcriptional regulator


downstream of the Notch receptor. _J. Biol. Chem._ 276, 45031–45040 (2001). CAS  PubMed  Google Scholar  * Rothenberg, E.V. Transcriptional drivers of the T-cell lineage program. _Curr.


Opin. Immunol._ 24, 132–138 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. _Proc. Natl. Acad.


Sci. USA_ 103, 13789–13794 (2006). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank J.C. Zuniga-Pfucker (University of Toronto) for OP9 and OP9-DL1


cells; J. Kisielow (Eidgenossische Technische Hochschule) for the Beko pre-T cell line; M. Busslinger (Institute of Molecular Pathology, Vienna) for _Pax5_−/− mice; H. Singh (Genentech) for


discussions and advice about the culture of _Ebf1_−/− pre-pro-B cells; I. Falk, S. Fietze and U. Stauffer for help with flow cytometry, genotyping and intravenous injection of mice; A.


Rolink, J. Kirberg and F. Savarese and members of the Grosschedl laboratory for discussions; D. van Essen for critical comments on the manuscript; and M. Rott for help in preparing the


figures and manuscript. Supported by the Max Planck Society (R.G.) and the German Research Foundation (R.G. and A.D.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Cellular


and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany Robert Nechanitzky, Duygu Akbas, Stefanie Scherer, Ildiko Györy, Senthilkumar Ramamoorthy 


& Rudolf Grosschedl * Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany Thomas Hoyler & Andreas Diefenbach Authors * Robert Nechanitzky View


author publications You can also search for this author inPubMed Google Scholar * Duygu Akbas View author publications You can also search for this author inPubMed Google Scholar * Stefanie


Scherer View author publications You can also search for this author inPubMed Google Scholar * Ildiko Györy View author publications You can also search for this author inPubMed Google


Scholar * Thomas Hoyler View author publications You can also search for this author inPubMed Google Scholar * Senthilkumar Ramamoorthy View author publications You can also search for this


author inPubMed Google Scholar * Andreas Diefenbach View author publications You can also search for this author inPubMed Google Scholar * Rudolf Grosschedl View author publications You can


also search for this author inPubMed Google Scholar CONTRIBUTIONS R.N. designed and did experiments, analyzed data and wrote the manuscript; D.A., S.S. and T.H. did experiments and analyzed


data; S.R. did bioinformatic analysis; I.G. provided _Ebf1_fl mice; A.D. supervised research; and R.G. designed and supervised research and wrote the manuscript. CORRESPONDING AUTHOR


Correspondence to Rudolf Grosschedl. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES AND TABLES


Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 1120 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Nechanitzky, R., Akbas, D.,


Scherer, S. _et al._ Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. _Nat Immunol_ 14, 867–875 (2013).


https://doi.org/10.1038/ni.2641 Download citation * Received: 04 March 2013 * Accepted: 11 May 2013 * Published: 30 June 2013 * Issue Date: August 2013 * DOI: https://doi.org/10.1038/ni.2641


SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy


to clipboard Provided by the Springer Nature SharedIt content-sharing initiative