The transcription factor t-bet controls regulatory t cell homeostasis and function during type 1 inflammation

feature-image

Play all audios:

Loading...

ABSTRACT Several subsets of Foxp3+ regulatory T cells (Treg cells) work in concert to maintain immune homeostasis. However, the molecular bases underlying the phenotypic and functional


diversity of Treg cells remain obscure. We show that in response to interferon-γ, Foxp3+ Treg cells upregulated the T helper type 1 (TH1)-specifying transcription factor T-bet. T-bet


promoted expression of the chemokine receptor CXCR3 on Treg cells, and T-bet+ Treg cells accumulated at sites of TH1 cell–mediated inflammation. Furthermore, T-bet expression was required


for the homeostasis and function of Treg cells during type 1 inflammation. Thus, in a subset of CD4+ T cells, the activities of the transcription factors Foxp3 and T-bet are overlaid, which


results in Treg cells with unique homeostatic and migratory properties optimized for the suppression of TH1 responses _in vivo_. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IFNΓ-INDUCTION


OF TH1-LIKE REGULATORY T CELLS CONTROLS ANTIVIRAL RESPONSES Article 16 March 2023 THE REGULATION AND DIFFERENTIATION OF REGULATORY T CELLS AND THEIR DYSFUNCTION IN AUTOIMMUNE DISEASES


Article 19 February 2024 TRANSCRIPTION TIPPING POINTS FOR T FOLLICULAR HELPER CELL AND T-HELPER 1 CELL FATE COMMITMENT Article Open access 30 September 2020 REFERENCES * Wilson, C.B.,


Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. _Nat. Rev. Immunol._ 9, 91–105 (2009). Article  CAS  PubMed  Google Scholar  * Reiner, S.L. Development in


motion: helper T cells at work. _Cell_ 129, 33–36 (2007). Article  CAS  PubMed  Google Scholar  * Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment.


_Cell_ 100, 655–669 (2000). Article  CAS  PubMed  Google Scholar  * Beima, K.M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in


variable context-dependent functional effects. _J. Biol. Chem._ 281, 11992–12000 (2006). Article  CAS  PubMed  Google Scholar  * Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M.


Regulatory T cells and immune tolerance. _Cell_ 133, 775–787 (2008). Article  CAS  PubMed  Google Scholar  * Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and


mature regulatory T cells. _Nature_ 445, 936–940 (2007). Article  CAS  PubMed  Google Scholar  * Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell


stimulation. _Nature_ 445, 931–935 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and


function of CD4+CD25+ regulatory T cells. _Nat. Immunol._ 4, 330–336 (2003). Article  CAS  PubMed  Google Scholar  * Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell


development by the transcription factor Foxp3. _Science_ 299, 1057–1061 (2003). Article  CAS  PubMed  Google Scholar  * Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy,


enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. _Nat. Genet._ 27, 20–21 (2001). Article  CAS  PubMed  Google Scholar  * Wildin, R.S. et al. X-linked neonatal diabetes


mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. _Nat. Genet._ 27, 18–20 (2001). Article  CAS  PubMed  Google Scholar  * Jankovic, D. et al.


Conventional T-bet+Foxp3− Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. _J. Exp. Med._ 204, 273–283 (2007). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25−Foxp3− Th1 cells are the source of IL-10-mediated immune suppression in chronic


cutaneous leishmaniasis. _J. Exp. Med._ 204, 285–297 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Siegmund, K. et al. Migration matters: regulatory T-cell


compartmentalization determines suppressive activity in vivo. _Blood_ 106, 3097–3104 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sarween, N. et al. CD4+CD25+ cells


controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. _J. Immunol._ 173, 2942–2951 (2004). Article  CAS  PubMed  Google Scholar  *


Belkaid, Y. Regulatory T cells and infection: a dangerous necessity. _Nat. Rev. Immunol._ 7, 875–888 (2007). Article  CAS  PubMed  Google Scholar  * Scott-Browne, J.P. et al. Expansion and


function of Foxp3-expressing T regulatory cells during tuberculosis. _J. Exp. Med._ 204, 2159–2169 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zheng, Y. et al. Regulatory


T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. _Nature_ 458, 351–356 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Williams, L.M.


& Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. _Nat. Immunol._ 8, 277–284 (2007). Article


  CAS  PubMed  Google Scholar  * Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. _J. Exp. Med._ 199,


303–313 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sather, B.D. et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory


disease. _J. Exp. Med._ 204, 1335–1347 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dudda, J.C., Perdue, N., Bachtanian, E. & Campbell, D.J. Foxp3+ regulatory T cells


maintain immune homeostasis in the skin. _J. Exp. Med._ 205, 1559–1565 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, I. et al. Recruitment of Foxp3+ T regulatory cells


mediating allograft tolerance depends on the CCR4 chemokine receptor. _J. Exp. Med._ 201, 1037–1044 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suffia, I., Reckling,


S.K., Salay, G. & Belkaid, Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. _J. Immunol._ 174, 5444–5455 (2005). Article  CAS  PubMed 


Google Scholar  * Yuan, Q. et al. CCR4-dependent regulatory T cell function in inflammatory bowel disease. _J. Exp. Med._ 204, 1327–1334 (2007). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. _Immunity_ 28, 546–558 (2008). Article  CAS  PubMed  Google Scholar


  * Cole, K.E. et al. Interferon-inducible T cell α chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding


to CXCR3. _J. Exp. Med._ 187, 2009–2021 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Farber, J.M. A macrophage mRNA selectively induced by γ-interferon encodes a member of


the platelet factor 4 family of cytokines. _Proc. Natl. Acad. Sci. USA_ 87, 5238–5242 (1990). Article  CAS  PubMed  PubMed Central  Google Scholar  * Luster, A.D., Unkeless, J.C. &


Ravetch, J.V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. _Nature_ 315, 672–676 (1985). Article  CAS  PubMed  Google Scholar


  * Lord, G.M. et al. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. _Blood_ 106, 3432–3439 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ferlin,


W.G. et al. The induction of a protective response in _Leishmania major_-infected BALB/c mice with anti-CD40 mAb. _Eur. J. Immunol._ 28, 525–531 (1998). Article  CAS  PubMed  Google Scholar


  * Boyman, O., Kovar, M., Rubinstein, M.P., Surh, C.D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. _Science_ 311, 1924–1927 (2006).


Article  CAS  PubMed  Google Scholar  * Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. _Nat. Immunol._ 3, 549–557 (2002). Article  CAS 


PubMed  Google Scholar  * Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. _Science_ 292, 1907–1910 (2001). Article  CAS  PubMed  Google Scholar


  * Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. _Science_ 295, 338–342 (2002). Article  CAS  PubMed  Google Scholar  *


Hancock, W.W. et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. _J. Exp. Med._ 192, 1515–1520 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Yoneyama, H. et al. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. _J. Exp. Med._ 195, 1257–1266 (2002). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Kursar, M. et al. Cutting edge: regulatory T cells prevent efficient clearance of _Mycobacterium tuberculosis_. _J. Immunol._ 178, 2661–2665


(2007). Article  CAS  PubMed  Google Scholar  * Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. _Nat. Immunol._ 6, 1047–1053 (2005).


Article  CAS  PubMed  Google Scholar  * Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. _J. Exp. Med._ 200, 79–87


(2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Neurath, M.F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and


Crohn's disease. _J. Exp. Med._ 195, 1129–1143 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garrett, W.S. et al. Communicable ulcerative colitis induced by T-bet


deficiency in the innate immune system. _Cell_ 131, 33–45 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Finotto, S. et al. Asthmatic changes in mice lacking T-bet are


mediated by IL-13. _Int. Immunol._ 17, 993–1007 (2005). Article  CAS  PubMed  Google Scholar  * Godfrey, V.L., Wilkinson, J.E. & Russell, L.B. X-linked lymphoreticular disease in the


scurfy (sf) mutant mouse. _Am. J. Pathol._ 138, 1379–1387 (1991). CAS  PubMed  PubMed Central  Google Scholar  * Muller, M. et al. CXCR3 signaling reduces the severity of experimental


autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. _J. Immunol._ 179, 2774–2786 (2007). Article 


PubMed  Google Scholar  * Santodomingo-Garzon, T., Han, J., Le, T., Yang, Y. & Swain, M.G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T


cells to the liver in mice. _Hepatology_ 49, 1267–1276 (2009). Article  CAS  PubMed  Google Scholar  * Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and


Vα14i NKT cells. _Immunity_ 20, 477–494 (2004). Article  CAS  PubMed  Google Scholar  * Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R. & Farrar, M.A. IL-2 receptor


beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. _J. Immunol._ 178, 280–290 (2007). Article  CAS  PubMed  Google Scholar  * Wei, G. et al. Global


mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. _Immunity_ 30, 155–167 (2009). Article  PubMed  PubMed


Central  Google Scholar  * Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. _Nature_ 446, 685–689 (2007). Article  CAS  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS We thank A. Weinmann (University of Washington) for _Tbx21__−/−_ mice; A. Rudensky (University of Washington) for _Foxp3_GFP mice; S. Ziegler (Benaroya


Research Institute) for mice with overexpression of thymic stromal lymphopoietin and for _Il4__−/−_ and _Stat6__−/−_ mice; M. Krishna-Kaja (University of Washington) for splenocytes from


_Stat1__−/−_ mice; L. Thompson and K. Smigiel for technical assistance; G. Debes, K. Klonowski and J. Hamerman for comments on the manuscript; and M. Warren for administrative assistance.


Supported by the US National Institutes of Health (DK072295, AI067750 and AI069889 to D.J.C.), the US Department of Defense (USAMRAA W81XWH-07-0246 to D.J.C.), the Burroughs-Wellcome Fund


(K.B.U.) and the Department of Immunology at the University of Washington Medical School (T32-CA009537 to M.A.K.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Benaroya Research Institute,


Seattle, Washington, USA Meghan A Koch, Nikole R Perdue, Justin R Killebrew & Daniel J Campbell * Department of Immunology, University of Washington School of Medicine, Seattle,


Washington, USA Meghan A Koch, Justin R Killebrew & Daniel J Campbell * Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA Glady's


Tucker-Heard & Kevin B Urdahl Authors * Meghan A Koch View author publications You can also search for this author inPubMed Google Scholar * Glady's Tucker-Heard View author


publications You can also search for this author inPubMed Google Scholar * Nikole R Perdue View author publications You can also search for this author inPubMed Google Scholar * Justin R


Killebrew View author publications You can also search for this author inPubMed Google Scholar * Kevin B Urdahl View author publications You can also search for this author inPubMed Google


Scholar * Daniel J Campbell View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.A.K., K.B.U. and D.J.C. designed the study, analyzed data and


wrote the manuscript, and M.A.K. and D.J.C. did experiments with assistance from N.R.P., J.R.K. and G.T-H. CORRESPONDING AUTHOR Correspondence to Daniel J Campbell. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–11 and Supplementary Table 1 (PDF 590 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Koch, M., Tucker-Heard, G., Perdue, N. _et al._ The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. _Nat Immunol_ 10,


595–602 (2009). https://doi.org/10.1038/ni.1731 Download citation * Received: 17 February 2009 * Accepted: 26 March 2009 * Published: 03 May 2009 * Issue Date: June 2009 * DOI:


https://doi.org/10.1038/ni.1731 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative