Pacific carbon cycling constrained by organic matter size, age and composition relationships

feature-image

Play all audios:

Loading...

ABSTRACT Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen1,2. The processes controlling organic matter production and removal are


important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter


transformation, degradation and turnover rates3,4. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large


particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface


and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules


persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter


molecules at 0.11–0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and


molecules is a key process governing organic matter cycling and deep ocean carbon storage. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS WHAT THE GEOLOGICAL PAST CAN TELL US ABOUT THE FUTURE OF


THE OCEAN’S TWILIGHT ZONE Article Open access 27 April 2023 NEOGENE BURIAL OF ORGANIC CARBON IN THE GLOBAL OCEAN Article 04 January 2023 PLANKTONIC FORAMINIFERA ORGANIC CARBON ISOTOPES AS


ARCHIVES OF UPPER OCEAN CARBON CYCLING Article Open access 17 August 2022 REFERENCES * Hansell, D. A. Relcalcitrant dissolved organic carbon fractions. _Ann. Rev. Mar. Sci._ 5, 421–445


(2013). Article  Google Scholar  * Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. _Nat. Rev. Microbiol._ 8,


593–599 (2010). Article  Google Scholar  * Carlson, C. A. in _Biogeochemistry of Marine Dissolved Organic Matter_ (eds Hansell, D. A & Carlson, C. A) 91–151 (Academic, 2002). Book 


Google Scholar  * Lee, C., Wakeham, S. & Arnosti, C. Particulate organic matter in the sea: the composition conundrum. _Ambio_ 33, 565–575 (2004). Article  Google Scholar  * McNichol, A.


 P. & Aluwihare, L. I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC).


_Chem. Rev._ 107, 443–466 (2007). Article  Google Scholar  * Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic-matter in the central north pacific-ocean. _Nature_ 330,


246–248 (1987). Article  Google Scholar  * Beaupre, S. R. & Druffel, E. R. M. Constraining the propagation of bomb-radiocarbon through the dissolved organic carbon (DOC) pool in the


northeast Pacific Ocean. _Deep-Sea Res. I_ 56, 1717–1726 (2009). Article  Google Scholar  * Druffel, E. R. M. & Williams, P. M. Identification of a deep marine source of particulate


organic-carbon using bomb C-14. _Nature_ 347, 172–174 (1990). Article  Google Scholar  * Benner, R. & Amon, R. M. W. The size–reactivity continuum of major bioelements in the ocean.


_Ann. Rev. Mar. Sci._ 7, 185–205 (2015). Article  Google Scholar  * Walker, B. D., Beaupre, S. R., Guilderson, T. P., Druffel, E.R.M. & McCarthy, M. D. Large-volume ultrafiltration for


the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. _Geochim. Cosmochim. Acta_ 75, 5187–5202 (2011). Article  Google Scholar  * Amon, R. M.


 W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. _Limnol. Oceanogr._ 41, 41–51 (1996). Article  Google Scholar  * Benner, R. & Herndl, G.


 J. in _Microbial Carbon Pump in the Ocean_ (eds Jiao, N., Azam, F. & Sanders, S.) 46–48 (Science AAAS, 2011). Google Scholar  * Brophy, J. E. & Carlson, D. J. Production of


biologically refractory dissolved organic carbon by natural seawater microbial populations. _Deep-Sea Res._ 36, 497–507 (1989). Article  Google Scholar  * Walker, B. D., Guilderson, T. P.,


Okimura, K. M., Peacock, M. B. & McCarthy, M. D. Radiocarbon signatures and size–age–composition relationships of major organic matter pools within a unique California upwelling system.


_Geochim. Cosmochim. Acta_ 126, 1–17 (2014). Article  Google Scholar  * Walker, B. D. & McCarthy, M. D. Elemental and isotopic characterization of dissolved and particulate organic


matter in a unique California upwelling system: importance of size and composition in the export of labile material. _Limnol. Oceanogr._ 57, 1757–1774 (2012). Article  Google Scholar  *


Benner, R. in _Biogeochemistry of Marine Dissolved Organic Matter_ (eds Hansell, D. A. & Carlson, C. A.) 59–90 (Academic, 2002). Book  Google Scholar  * Smith, D. C., Simon, M.,


Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapide particle dissolution. _Nature_ 359, 139–142 (1992). Article  Google


Scholar  * Middelburg, J. J. Chemoautotrophy in the ocean. _Geophys. Res. Lett._ 38, L24604 (2011). Article  Google Scholar  * Ingalls, A. E. et al. Quantifying archaeal community autotrophy


in the mesopelagic ocean using natural radiocarbon. _Proc. Natl Acad. Sci. USA_ 103, 6442–6447 (2006). Article  Google Scholar  * Rau, G. H. Another recipe for bomb C-14 dilution. _Nature_


350, 116 (1991). Article  Google Scholar  * Verdugo, P. Marine microgels. _Ann. Rev. Mar. Sci._ 4, 375–400 (2012). Article  Google Scholar  * Babbin, A. R., Keil, R. G., Devol, A. H. &


Ward, B. B. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. _Science_ 344, 406–408 (2014). Article  Google Scholar  * McCarthy, M. D. et al. Chemosynthetic


origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. _Nat. Geosci._ 4, 32–36 (2011). Article  Google Scholar  * Muller-Karger, F. E. et al. The importance


of continental margins in the global carbon cycle. _Geophys. Res. Lett._ 32, L01602 (2005). Article  Google Scholar  * Pohlman, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L. &


Chapman, N. R. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. _Nat. Geosci._ 4, 37–41 (2011). Article  Google Scholar  * Feely, R. A. et al. Oxygen


utilization and organic carbon remineralization in the upper water column of the Pacific Ocean. _J. Oceanogr._ 60, 45–52 (2004). Article  Google Scholar  * Emerson, S. Annual net community


production and the biological carbon flux in the ocean. _Glob. Biogeochem. Cycles_ 28, 14–28 (2014). Article  Google Scholar  * Druffel, E. R. M. & Griffin, S. Radiocarbon in dissolved


organic carbon of the South Pacific Ocean. _Geophys. Res. Lett._ 42, 4096–4101 (2015). Article  Google Scholar  * Bauer, J. E. & Druffel, E. R. M. Ocean margins as a significant source


of organic matter to the deep open ocean. _Nature_ 392, 482–485 (1998). Article  Google Scholar  * Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep


ocean. _Science_ 348, 331–333 (2015). Article  Google Scholar  * Reeburgh, W. S. Figures summarizing the global cycles of biogeochemically important elements. _Bull. Ecol. Soc. Am._ 78,


260–267 (1997). Google Scholar  * Roland, L. A., McCarthy, M. D., Peterson, T. D. & Walker, B. D. A large-volume micro-filtration system for isolating suspended particulate organic


matter: fabrication and assessment vs. GFF filters in central N. Pacific. _Limnol. Oceanogr._ 7, 64–80 (2009). Article  Google Scholar  * Vogel, J. S., Southon, J. R. & Nelson, D. E.


Catalyst and binder effects in the use of filamentous graphite for Ams. _Nucl. Instr. Meth. Phys. Res. B_ 29, 50–56 (1987). Article  Google Scholar  * Beaupre, S. R., Druffel, E. R. M. &


Griffin, S. A low-blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. _Limnol. Oceanogr._ 5, 174–184 (2007). Article  Google


Scholar  * Stuiver, M. & Polach, H. A. Discussion: reporting of 14C data. _Radiocarbon_ 19, 355–363 (1977). Article  Google Scholar  * Sheldon, R. W., Prakash, A. & Sutcliff, W. H. 


Jr Size distribution of particles in the ocean. _Limnol. Oceanogr._ 17, 327–340 (1972). Article  Google Scholar  * Chisholm, S. W. Phytoplankton size. _Environ. Sci. Res._ 43, 213–237


(1992). Google Scholar  * Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. _Geochim. Cosmochim. Acta_ 70, 2990–3010 (2006). Article 


Google Scholar  * D’Andrilli, J. et al. Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and


atmospheric pressure photoionization. _Rapid Commun. Mass Spectrom._ 24, 643–650 (2010). Article  Google Scholar  * Dittmar, T. & Kattner, G. Recalcitrant dissolved organic matter in


the ocean: major contribution of small amphiphilics. _Mar. Chem._ 82, 115–123 (2003). Article  Google Scholar  * Repeta, D. J. & Aluwihare, L. I. Radiocarbon analysis of neutral sugars


in high-molecular-weight dissolved organic carbon: Implications for organic carbon cycling. _Limnol. Oceanogr._ 51, 1045–1053 (2006). Article  Google Scholar  * Toggweiler, J. R., Dixon, K.


& Bryan, K. Simulations of radiocarbon in a coarse-resolution world ocean model 1. Steady-state prebomb distributions. _J. Geophys. Res._ 94, 8217–8242 (1989). Article  Google Scholar  *


Masiello, C. A., Druffel, E. R. M. & Bauer, J. E. Physical controls on dissolved inorganic radiocarbon variability in the California current. _Deep-Sea Res. II_ 45, 617–642 (1998).


Google Scholar  Download references ACKNOWLEDGEMENTS We gratefully acknowledge B. Phillips, the staff of the Granite Canyon Marine Pollution Studies Laboratory (GCMPSL) and the Natural


Energy Laboratory of Hawaii Authority (NELHA) for providing facilities capable of large-volume seawater DOM and suspended POM isolations. K. Okimura, J. Walker, L. Roland, K. Walker, G. V. 


Reixach, and M. Calleja (UC Santa Cruz) aided with fieldwork and sample collection. S. Griffin (UCI) and P. Zermeno (LLNL) aided with sample analysis. F. Primeau (UCI) aided with error


analysis and Matlab scripts. This work was funded by the Friends of Long Marine Lab Student Research Awards (to B.D.W.), the UC Santa Cruz STEPS Institute for Innovation in Environmental


Research (to B.D.W.), the UC Santa Cruz Center for the Dynamics and Evolution of the Land-Sea Interface (to B.D.W.), the Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology


Trust (to B.D.W.), the UC Santa Cruz Institute of Geophysics and Planetary Physics (to B.D.W. and M.D.M.), NSF OCE-1358041 and NSF OCE-0623622 (M.D.M.) and NSF ARC-1022716 (E.R.M.D.). A


portion of this work was performed under the auspices of the US Department of Energy (contract W-7405-Eng-48 and DE-AC52-07NA27344) and a Keck Carbon Cycle AMS Laboratory Postdoctoral


Scholarship (B.D.W.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Earth System Science, University of California, Irvine, 2212 Croul Hall, Irvine, California 92697-3100, USA


Brett D. Walker & Ellen R. M. Druffel * Stony Brook University, School of Marine and Atmospheric Sciences, CH123, Stony Brook, New York 11794-5000, USA Steven R. Beaupré * Department of


Ocean Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA Thomas P. Guilderson & Matthew D. McCarthy * Lawrence Livermore National


Laboratory, Center for Accelerator Mass Spectrometry (CAMS), LLNL-L397, 7000 East Avenue, Livermore, California 94551, USA Thomas P. Guilderson Authors * Brett D. Walker View author


publications You can also search for this author inPubMed Google Scholar * Steven R. Beaupré View author publications You can also search for this author inPubMed Google Scholar * Thomas P.


Guilderson View author publications You can also search for this author inPubMed Google Scholar * Matthew D. McCarthy View author publications You can also search for this author inPubMed 


Google Scholar * Ellen R. M. Druffel View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS B.D.W. conceived the research; B.D.W., S.R.B., T.P.G.,


M.D.M. and E.R.M.D. performed research; S.R.B., T.P.G., and E.R.M.D. contributed new reagents/analytical tools and models; B.D.W., S.R.B., T.P.G., E.R.M.D. and M.D.M. analysed data; B.D.W.


wrote the paper with inputs from S.R.B., T.P.G., M.D.M. and E.R.M.D. CORRESPONDING AUTHOR Correspondence to Brett D. Walker. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information (PDF 1994 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 228 kb)


SUPPLEMENTARY INFORMATION Supplementary Information (TXT 0 kb) SUPPLEMENTARY INFORMATION Supplementary Information (TXT 2 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 32 kb)


SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 33 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 31 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX


34 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 31 kb) SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 64 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Walker, B., Beaupré, S., Guilderson, T. _et al._ Pacific carbon cycling constrained by organic matter size, age and composition relationships. _Nature Geosci_


9, 888–891 (2016). https://doi.org/10.1038/ngeo2830 Download citation * Received: 27 June 2016 * Accepted: 30 September 2016 * Published: 14 November 2016 * Issue Date: December 2016 * DOI:


https://doi.org/10.1038/ngeo2830 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative