Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes

feature-image

Play all audios:

Loading...

ABSTRACT Oligodendrocytes myelinate axons for rapid impulse conduction and contribute to normal axonal functions in the central nervous system. In multiple sclerosis, demyelination is caused


by autoimmune attacks, but the role of oligodendroglial cells in disease progression and axon degeneration is unclear. Here we show that oligodendrocytes harbor peroxisomes whose function


is essential for maintaining white matter tracts throughout adult life. By selectively inactivating the import factor PEX5 in myelinating glia, we generated mutant mice that developed


normally, but within several months showed ataxia, tremor and premature death. Absence of functional peroxisomes from oligodendrocytes caused widespread axonal degeneration and progressive


subcortical demyelination, but did not interfere with glial survival. Moreover, it caused a strong proinflammatory milieu and, unexpectedly, the infiltration of B and activated CD8+ T cells


into brain lesions. We conclude that peroxisomes provide oligodendrocytes with an essential neuroprotective function against axon degeneration and neuroinflammation, which is relevant for


human demyelinating diseases. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS REMYELINATION PROTECTS NEURONS FROM DLK-MEDIATED NEURODEGENERATION Article Open access 23 October 2024


MICROGLIA-MEDIATED DEMYELINATION PROTECTS AGAINST CD8+ T CELL-DRIVEN AXON DEGENERATION IN MICE CARRYING PLP DEFECTS Article Open access 30 October 2023 DOR ACTIVATION IN MATURE


OLIGODENDROCYTES REGULATES Α-KETOGLUTARATE METABOLISM LEADING TO ENHANCED REMYELINATION IN AGED MICE Article 12 September 2024 REFERENCES * Lazzarini, R.A. _Myelin Biology and Disorders_


(Elsevier Academic, San Diego, California, USA, 2004). Google Scholar  * Bjartmar, C. & Trapp, B.D. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional


consequences. _Curr. Opin. Neurol._ 14, 271–278 (2001). Article  CAS  Google Scholar  * Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. _N. Engl. J. Med._ 338,


278–285 (1998). Article  CAS  Google Scholar  * Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. _Science_ 280, 1610–1613 (1998).


Article  CAS  Google Scholar  * Lappe-Siefke, C. et al. Disruption of _Cnp1_ uncouples oligodendroglial functions in axonal support and myelination. _Nat. Genet._ 33, 366–374 (2003). Article


  CAS  Google Scholar  * Suter, U. & Scherer, S.S. Disease mechanisms in inherited neuropathies. _Nat. Rev. Neurosci._ 4, 714–726 (2003). Article  CAS  Google Scholar  * Edgar, J.M. et


al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. _J. Cell Biol._ 166, 121–131 (2004). Article  CAS  Google Scholar  * Ferreirinha,


F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. _J. Clin. Invest._ 113, 231–242 (2004). Article  CAS 


Google Scholar  * Schrader, M. & Fahimi, H.D. Mammalian peroxisomes and reactive oxygen species. _Histochem. Cell Biol._ 122, 383–393 (2004). Article  CAS  Google Scholar  * Wanders,


R.J. Peroxisomes, lipid metabolism, and peroxisomal disorders. _Mol. Genet. Metab._ 83, 16–27 (2004). Article  CAS  Google Scholar  * Baes, M. et al. A mouse model for Zellweger syndrome.


_Nat. Genet._ 17, 49–57 (1997). Article  CAS  Google Scholar  * Hirrlinger, J., Resch, A., Gutterer, J.M. & Dringen, R. Oligodendroglial cells in culture effectively dispose of exogenous


hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. _J. Neurochem._ 82, 635–644 (2002). Article  CAS  Google Scholar  * Gould, S.J. & Collins, C.S.


Opinion: peroxisomal-protein import: is it really that complex? _Nat. Rev. Mol. Cell Biol._ 3, 382–389 (2002). Article  CAS  Google Scholar  * Dodt, G. et al. Mutations in the PTS1 receptor


gene, _PXR1_, define complementation group 2 of the peroxisome biogenesis disorders. _Nat. Genet._ 9, 115–125 (1995). Article  CAS  Google Scholar  * Baes, M., Dewerchin, M., Janssen, A.,


Collen, D. & Carmeliet, P. Generation of _Pex5-loxP_ mice allowing the conditional elimination of peroxisomes. _Genesis_ 32, 177–178 (2002). Article  CAS  Google Scholar  * Chang, C.C.


et al. Metabolic control of peroxisome abundance. _J. Cell Sci._ 112, 1579–1590 (1999). CAS  Google Scholar  * Saher, G. et al. High cholesterol level is essential for myelin membrane


growth. _Nat. Neurosci._ 8, 468–475 (2005). Article  CAS  Google Scholar  * Zoeller, R.A. & Raetz, C.R. Isolation of animal cell mutants deficient in plasmalogen biosynthesis and


peroxisome assembly. _Proc. Natl. Acad. Sci. USA_ 83, 5170–5174 (1986). Article  CAS  Google Scholar  * Rodemer, C. et al. Inactivation of ether lipid biosynthesis causes male infertility,


defects in eye development and optic nerve hypoplasia in mice. _Hum. Mol. Genet._ 12, 1881–1895 (2003). Article  CAS  Google Scholar  * Moser, H.W., Bergin, A. & Cornblath, D.


Peroxisomal disorders. _Biochem. Cell Biol._ 69, 463–474 (1991). Article  CAS  Google Scholar  * Wanders, R.J. & Waterham, H.R. Peroxisomal disorders I: biochemistry and genetics of


peroxisome biogenesis disorders. _Clin. Genet._ 67, 107–133 (2005). Article  CAS  Google Scholar  * Forss-Petter, S. et al. Targeted inactivation of the X-linked adrenoleukodystrophy gene in


mice. _J. Neurosci. Res._ 50, 829–843 (1997). Article  CAS  Google Scholar  * Lu, J.F. et al. A mouse model for X-linked adrenoleukodystrophy. _Proc. Natl. Acad. Sci. USA_ 94, 9366–9371


(1997). Article  CAS  Google Scholar  * Kobayashi, T., Shinnoh, N., Kondo, A. & Yamada, T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid


metabolism. _Biochem. Biophys. Res. Commun._ 232, 631–636 (1997). Article  CAS  Google Scholar  * Simpson, J.E., Newcombe, J., Cuzner, M.L. & Woodroofe, M.N. Expression of monocyte


chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. _J. Neuroimmunol._ 84, 238–249 (1998). Article  CAS  Google Scholar


  * McManus, C. et al. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. _J. Neuroimmunol._ 86, 20–29 (1998). Article 


CAS  Google Scholar  * Loers, G., Aboul-Enein, F., Bartsch, U., Lassmann, H. & Schachner, M. Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of


differentially myelin-compromised mutant mice: a morphological and biochemical study. _Mol. Cell. Neurosci._ 27, 175–189 (2004). Article  CAS  Google Scholar  * Genoud, S. et al. Notch1


control of oligodendrocyte differentiation in the spinal cord. _J. Cell Biol._ 158, 709–718 (2002). Article  CAS  Google Scholar  * Schrader, M. & Fahimi, H.D. Peroxisomes and oxidative


stress. _Biochim. Biophys. Acta_ 1763, 1755–1766 (2006). Article  CAS  Google Scholar  * Loes, D.J. et al. Analysis of MRI patterns aids prediction of progression in X-linked


adrenoleukodystrophy. _Neurology_ 61, 369–374 (2003). Article  CAS  Google Scholar  * Wilken, B. et al. Quantitative proton magnetic resonance spectroscopy of children with


adrenoleukodystrophy before and after hematopoietic stem cell transplantation. _Neuropediatrics_ 34, 237–246 (2003). Article  CAS  Google Scholar  * Dubois-Dalcq, M., Feigenbaum, V. &


Aubourg, P. The neurobiology of X-linked adrenoleukodystrophy, a demyelinating peroxisomal disorder. _Trends Neurosci._ 22, 4–12 (1999). Article  CAS  Google Scholar  * Mosser, J. et al.


Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. _Nature_ 361, 726–730 (1993). Article  CAS  Google Scholar  * Kemp, S. & Wanders, R.J.


X-linked adrenoleukodystrophy: Very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. _Mol. Genet. Metab._ 90, 268–276 (2007). Article  CAS 


Google Scholar  * Pujol, A. et al. Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. _Hum. Mol. Genet._ 11, 499–505 (2002).


Article  CAS  Google Scholar  * Hudspeth, M.P. & Raymond, G.V. Immunopathogenesis of adrenoleukodystrophy: current understanding. _J. Neuroimmunol._ 182, 5–12 (2006). Article  Google


Scholar  * Barth, P.G. et al. Late onset white matter disease in peroxisome biogenesis disorder. _Neurology_ 57, 1949–1955 (2001). Article  CAS  Google Scholar  * Baumgartner, M.R. et al.


Clinical approach to inherited peroxisomal disorders: a series of 27 patients. _Ann. Neurol._ 44, 720–730 (1998). Article  CAS  Google Scholar  * Goverman, J. et al. The role of CD8+ T cells


in multiple sclerosis and its animal models. _Curr. Drug Targets Inflamm. Allergy_ 4, 239–245 (2005). Article  CAS  Google Scholar  * Barnett, M.H. & Prineas, J.W. Relapsing and


remitting multiple sclerosis: pathology of the newly forming lesion. _Ann. Neurol._ 55, 458–468 (2004). Article  Google Scholar  * Raivich, G. et al. Immune surveillance in the injured


nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. _J. Neurosci._ 18, 5804–5816 (1998). Article  CAS  Google


Scholar  * Ip, C.W. et al. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. _J. Neurosci._ 26, 8206–8216


(2006). Article  CAS  Google Scholar  * Natt, O. et al. High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. _J. Neurosci. Methods_ 120, 203–209 (2002). Article


  CAS  Google Scholar  * Gallyas, F. Silver staining of myelin by means of physical development. _Neurol. Res._ 1, 203–209 (1979). Article  CAS  Google Scholar  * Bielschowsky, M. Die


Silberimprägnation der Neurofibrillen. _J. Psychol. Neurol._ 3, 169–183 (1904). Google Scholar  * Jung, M., Sommer, I., Schachner, M. & Nave, K.A. Monoclonal antibody O10 defines a


conformationally sensitive cell-surface epitope of proteolipid protein (PLP): evidence that PLP misfolding underlies dysmyelination in mutant mice. _J. Neurosci._ 16, 7920–7929 (1996).


Article  CAS  Google Scholar  * Norton, W.T. & Poduslo, S.E. Myelination in rat brain: method of myelin isolation. _J. Neurochem._ 21, 749–757 (1973). Article  CAS  Google Scholar  *


Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. _Can. J. Biochem. Physiol._ 37, 911–917 (1959). Article  CAS  Google Scholar  * Koivusalo, M., Haimi,


P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid


concentration on instrument response. _J. Lipid Res._ 42, 663–672 (2001). Google Scholar  * Gutcher, I., Urich, E., Wolter, K., Prinz, M. & Becher, B. Interleukin 18–independent


engagement of interleukin 18 receptor is required for autoimmune inflammation. _Nat. Immunol._ 7, 946–953 (2006). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We


dedicate this paper to Hugo Moser for his pioneering work on peroxisomes in childhood neurological diseases. We thank J. Barth, U. Bode, A. Fahrenholz, A. Nave, S. Relitz and S. Hühold for


excellent technical assistance, and gratefully acknowledge J. Gärtner and D.H. Hunneman for clinical diagnostic service (VLCFA). This work was funded by grants from the European Union (PEX


and X-ALD), the US National Multiple Sclerosis Society, the Hertie Foundation, and the generous support of the private Liley and Del Marmol Foundations. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, Göttingen, D-37075, Germany Celia M Kassmann, Corinna Lappe-Siefke, Hauke B


Werner & Klaus-Armin Nave * Laboratory for Cell Metabolism, Faculty of Pharmacy, Katholieke Universiteit Leuven, Leuven, 3000, Belgium Myriam Baes * Biochemie-Zentrum, Universität


Heidelberg, Heidelberg, D-69120, Germany Britta Brügger * Department of Neuropathology, University of Göttingen, Göttingen, D-37075, Germany Alexander Mildner & Marco Prinz *


Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, 37077, Germany Oliver Natt, Thomas Michaelis & Jens Frahm Authors * Celia M Kassmann


View author publications You can also search for this author inPubMed Google Scholar * Corinna Lappe-Siefke View author publications You can also search for this author inPubMed Google


Scholar * Myriam Baes View author publications You can also search for this author inPubMed Google Scholar * Britta Brügger View author publications You can also search for this author


inPubMed Google Scholar * Alexander Mildner View author publications You can also search for this author inPubMed Google Scholar * Hauke B Werner View author publications You can also search


for this author inPubMed Google Scholar * Oliver Natt View author publications You can also search for this author inPubMed Google Scholar * Thomas Michaelis View author publications You


can also search for this author inPubMed Google Scholar * Marco Prinz View author publications You can also search for this author inPubMed Google Scholar * Jens Frahm View author


publications You can also search for this author inPubMed Google Scholar * Klaus-Armin Nave View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


C.M.K. performed the analyses and drafted the manuscript. C.L.-S. provided _Cnp-Cre_ and M.B. provided _Pex5_ floxed mice. B.B. determined myelin lipids by mass spectroscopy. A.M. and M.P.


performed FACS analysis and quantified cytokines. H.B.W. participated in mouse genetics. O.N., T.M. and J.F. performed MRI. K.-A.N. designed the study and finalized the manuscript.


CORRESPONDING AUTHOR Correspondence to Klaus-Armin Nave. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


TEXT AND FIGURES Supplementary Figures 1–4 (PDF 731 kb) SUPPLEMENTARY VIDEO 1 Ataxia of _Pex5__flox/flox*__Cnp1-Cre_ mice. Conditional _Pex5_ mutant mouse (_Pex5__flox/flox*__Cnp1-Cre_)


with hind limb ataxia as found in clinical stage III-IV. Motor defects are obvious when the mouse is placed on a cage top (slow motion video). (MOV 1096 kb) RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kassmann, C., Lappe-Siefke, C., Baes, M. _et al._ Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. _Nat


Genet_ 39, 969–976 (2007). https://doi.org/10.1038/ng2070 Download citation * Received: 11 January 2007 * Accepted: 14 May 2007 * Published: 22 July 2007 * Issue Date: August 2007 * DOI:


https://doi.org/10.1038/ng2070 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative