- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Tower, ground-based and satellite observations indicate that tropical deforestation results in warmer, drier conditions at the local scale. Understanding the regional or global
impacts of deforestation on climate, and ultimately on agriculture, requires modelling. General circulation models show that completely deforesting the tropics could result in global warming
equivalent to that caused by burning of fossil fuels since 1850, with more warming and considerable drying in the tropics. More realistic scenarios of deforestation yield less warming and
less drying, suggesting critical thresholds beyond which rainfall is substantially reduced. In regional, mesoscale models that capture topography and vegetation-based discontinuities, small
clearings can actually enhance rainfall. At this smaller scale as well, a critical deforestation threshold exists, beyond which rainfall declines. Future agricultural productivity in the
tropics is at risk from a deforestation-induced increase in mean temperature and the associated heat extremes and from a decline in mean rainfall or rainfall frequency. Through
teleconnections, negative impacts on agriculture could extend well beyond the tropics. Access through your institution Buy or subscribe This is a preview of subscription content, access via
your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this
article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in
* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS TROPICAL DEFORESTATION CAUSES LARGE REDUCTIONS IN OBSERVED
PRECIPITATION Article Open access 01 March 2023 DEFORESTATION INTENSIFIES DAILY TEMPERATURE VARIABILITY IN THE NORTHERN EXTRATROPICS Article Open access 10 October 2022 DEFORESTATION-INDUCED
WARMING OVER TROPICAL MOUNTAIN REGIONS REGULATED BY ELEVATION Article 14 December 2020 CHANGE HISTORY * _ 18 DECEMBER 2014 In the print version of this Review, the 'published
online' date should read 18 December 2014. The online versions are correct. _ REFERENCES * D'Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia:
a review on scale and resolution. _Int. J. Climatol._ 27, 633–647 (2007). Article Google Scholar * Davidson, E. A. et al. The Amazon basin in transition. _Nature._ 481, 321–328 (2012).
Article CAS Google Scholar * Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. _Int. J. Climatol._ 34, 929–953 (2013). Article Google Scholar * Bonan,
G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. _Science_ 320, 1444–1449 (2008). Article CAS Google Scholar * Feddema, J. J. et al. The
importance of landcover change in simulating future climates. _Science_ 310, 1674–1678 (2005). Article CAS Google Scholar * Bala, G. et al. Combined climate and carbon-cycle effects of
large-scale deforestation. _Proc. Natl Acad. Sci. USA_ 104, 6550–6555 (2007). Article CAS Google Scholar * Findell, K. L., Knutson, T. R. & Milly, P. C. D. Weak simulated
extratropical responses to complete tropical deforestation. _J. Climate_ 19, 2835–2850 (2006). Article Google Scholar * IPCC _Climate Change 2013: The Physical Science Basis_ (eds Stocker,
T. F. et al.) (Cambridge Univ. Press, 2013). * Avissar, R. & Werth, D. Global hydroclimatological teleconnections resulting from tropical deforestation. _J. Hydrometeorol._ 6, 134–145
(2005). Article Google Scholar * Lawrence, P. J. & Chase, T. N. Investigating the climate impacts of global land cover change in the community climate system model. _Int. J. Climatol._
30, 2066–2087 (2010). Article Google Scholar * Sud, Y. et al. Biogeophysical consequences of a tropical deforestation scenario: a GCM simulation study. _J. Clim._ 9, 3225–3247 (1996).
Article Google Scholar * McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. & Pitman, A. Global climate sensitivity to tropical deforestation. _Glob. Planet. Change_ 10,
97–128 (1995). Article Google Scholar * Zhang, H., Henderson-Sellers, A. & McGuffie, K. Impacts of tropical deforestation. Part I: Process analysis of local climatic change. _J.Clim._
9, 1497–1517 (1996). Article Google Scholar * Zhang, H., Henderson-Sellers, A. & McGuffie, K. The compounding effects of tropical deforestation and greenhouse warming on climate.
_Climatic Change_ 49, 309–338 (2001). Article CAS Google Scholar * Voldoire, A. & Royer, J. F. Tropical deforestation and climate variability. _Clim. Dynam._ 22, 857–874 (2004).
Article Google Scholar * Voldoire, A. & Royer, J. F. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. _Clim. Dynam._ 24, 843–862 (2005).
Article Google Scholar * Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. _Earth Interact._ 14, 1–34 (2010). Article
Google Scholar * Williams, E. R. & Satori, G. Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. _J. Atmos. Sol. Terr.Phys._ 66: 1213–1231
(2004). Article Google Scholar * Lean, J. & Warrilow, D. Simulation of the regional climatic impact of Amazon deforestation. _Nature_ 342, 411–413 (1989). Article Google Scholar *
Mylne, M. F. & Rowntree, P. R. Modeling the effects of albedo change associated with tropical deforestation. _Climatic Change_ 21, 317–343 (1991). Article Google Scholar * Nobre, C.
A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. _J. Clim._ 4, 957–988 (1991). Article Google Scholar * Dickinson, R. E. & Kennedy, P. Impacts
on regional climate of Amazon deforestation. _Geophys. Res. Lett._ 19, 1947–1950 (1992). Article Google Scholar * Lean, J. & Rowntree, P. A GCM simulation of the impact of Amazonian
deforestation on climate using an improved canopy representation. _Q. J. R. Meteorol. Soc._ 119, 509–530 (1993). Article Google Scholar * Pitman, A., Durbidge, T., Henderson-Sellers, A.
& McGuffie, K. Assessing climate model sensitivity to prescribed deforested landscapes. _Int. J. Climatol._ 13, 879–898 (1993). Article Google Scholar * Dirmeyer, P. A. & Shukla,
J. Albedo as a modulator of climate response to tropical deforestation. _J. Geophys Res. Atmos._ 99, 20863–20877 (1994). Article Google Scholar * Polcher, J. & Laval, K. A statistical
study of the regional impact of deforestation on climate in the LMD GCM. _Clim. Dynam._ 10, 205–219 (1994). Article Google Scholar * Polcher, J. & Laval, K. The impact of African and
Amazonian deforestation on tropical climate. _J. Hydrol._ 155, 389–405 (1994). Article Google Scholar * Lean, J., Bunton, C. B., Nobre, C. A. & Rowntree, P. R. in _Amazonian
deforestation and climate_ (Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 549–576 (Wiley, 1996). Google Scholar * Manzi, A. O. & Planton, S. in _Amazonian
deforestation and climate_ (Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 505–529 (Wiley, 1996). Google Scholar * Lean, J. & Rowntree, P. Understanding the
sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. _J. Clim._ 10, 1216–1235 (1997). Article Google Scholar * Hahmann,
A. N. & Dickinson, R. E. RCCM2-BATS model over tropical South America: Applications to tropical deforestation. _J. Clim._ 10, 1944–1964 (1997). Article Google Scholar * Costa, M. H.
& Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. _J. Clim._ 13, 18–34 (2000). Article Google Scholar * Gedney, N.
& Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. _Geophys. Res. Lett._ 27, 3053–3056 (2000). Article Google Scholar * Kleidon,
A. & Heimann, M. Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian
deforestation. _Clim. Dynam._ 16, 183–199 (2000). Article Google Scholar * Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. F. & Giarolla, E. Amazon deforestation and climate
change in a coupled model simulation. _J. Clim._ 22, 5686–5697 (2009). Article Google Scholar * Semazzi, F. H. M. & Song, Y. A GCM study of climate change induced by deforestation in
Africa. _Clim. Res._ 17, 169–182 (2001). Article Google Scholar * Maynard, K. & Royer, J. F. Sensitivity of a general circulation model to land surface parameters in African tropical
deforestation experiments. _Clim. Dynam._ 22, 555–572 (2004). Article Google Scholar * Werth, D. & Avissar, R. The local and global effects of African deforestation. _Geophys. Res_.
_Lett._ 32, L12704 (2005). Google Scholar * Schneck, R. & Mosbrugger, V. Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms.
_J. Geophys. Res. Atmos._ 116, D11116 (2011). Article Google Scholar * Werth, D. & Avissar, R. The local and global effects of Amazon deforestation. _J. Geophys. Res. Atmos._ 107, 8087
(2002). Article Google Scholar * Cui, X., Graf, H. F., Langmann, B., Chen, W. & Huang, R. Climate impacts of anthropogenic land use changes on the Tibetan Plateau. _Glob. Planet.
Change_ 54, 33–56 (2006). Article Google Scholar * Hasler, N., Werth, D. & Avissar, R. Effects of tropical deforestation on global hydroclimate: A multimodel ensemble analysis. _J.
Clim._ 22, 1124–1141 (2009). Article Google Scholar * Takata, K., Saito, K. & Yasunari, T. Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation.
_Proc. Natl Acad. Sci. USA_ 106, 9586–9589 (2009). Article CAS Google Scholar * Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric
teleconnections. _Earth Interact._ 14, 1–34 (2010). Article Google Scholar * Chase, T. N. et al. The sensitivity of a general circulation model to global changes in leaf area index. _J.
Geophys. Res._ 101, 7393–7408 (1996). Article Google Scholar * Chase, T. N., Pielke, R. A. Sr, Kittel, T. G. F., Nemani, R. R. & Running, S. W. Simulated impacts of historical land
cover changes on global climate in northern winter. _Clim. Dynam._ 16, 93–105 (2000). Article Google Scholar * Medvigy, D., Walko, R. L., Otte, M. J. & Avissar, R. Simulated changes in
northwest U. S. climate in response to Amazon deforestation. _J. Clim._ 26, 9115–9136 (2013). Article Google Scholar * Mabuchi, K., Sato, Y. & Kida, H. Climatic impact of vegetation
change in the Asian tropical region. Part I: Case of the northern hemisphere summer. _J. Clim._ 18, 410–428 (2005). Article Google Scholar * Werth, D. & Avissar, R. The local and
global effects of Southeast Asian deforestation. _Geophys. Res_. _Lett._ 32, L20702 (2005). Google Scholar * Pitman, A. J. et al. Uncertainties in climate responses to past land cover
change: First results from the LUCID intercomparison study. _Geophys. Res. Lett._ 36, L14814 (2009). Article Google Scholar * Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D.
& Li, B. L. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. _Atmos. Chem. Phys._ 13, 1039–1056 (2013). Article CAS
Google Scholar * Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. & Wickett, M. Climate effects of global land cover change. _Geophys. Res. Lett._ 32, L23705 (2005). Article Google
Scholar * Medvigy, D., Walko, R. L. & Avissar, R. Effects of deforestation on spatiotemporal distributions of precipitation in South America. _J. Clim._ 24, 2147–2163 (2011). Article
Google Scholar * Castillo, C. K. G. & Gurney, K. R. A sensitivity analysis of surface biophysical, carbon, and climate impacts of tropical deforestation rates in CCSM4-CNDV. _J. Clim._
26, 805–821 (2013). Article Google Scholar * Oyama, M. D. & Nobre, C. A. A new climate-vegetation equilibrium state for tropical South America. _Geophys. Res. Lett._ 30, 2199 (2003).
Article Google Scholar * Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. _J. Geophys. Res._ 34, L17709 (2007). Google
Scholar * Ramos da Silva, R., Werth, D. & Avissar, R. Regional impacts of future land-cover changes on the amazon basin wet-season climate. _J. Clim._ 21, 1153–1170 (2008). Article
Google Scholar * Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. _Theor.
Appl. Climatol._ 78, 157–175 (2004). Article Google Scholar * Senna, M. C. A., Costa, M. H. & Pires, G. F. Vegetation-atmosphere-soil nutrient feedbacks in the Amazon for different
deforestation scenarios. _J. Geophys. Res._ 114, D04104 (2009). Article CAS Google Scholar * Makarieva, A. M., Gorshkov, V. G. & Li, B. L. Precipitation on land versus distance from
the ocean: Evidence for a forest pump of atmospheric moisture. _Ecol. Complexity_ 6, 302–307 (2009). Article Google Scholar * Spracklen, D. V., Arnold, S. R. & Taylor, C. M.
Observations of increased tropical rainfall preceded by air passage over forests. _Nature_ 489, 282–286 (2012). Article CAS Google Scholar * Medvigy, D., Walko, R. L. & Avissar, R.
Modeling interannual variability of the Amazon hydroclimate. _Geophys. Res. Lett._ 35, L15817 (2008). Article Google Scholar * Kain, J. S. The Kain–Fritsch convective parameterization: An
update. _J. Appl. Meteor._ 43, 170–181 (2004). Article Google Scholar * Avissar, R., Silva Dias, P. L., Silva Dias, M. A. & Nobre, C. The Large-scale biosphere-atmosphere experiment in
Amazonia (LBA): Insights and future research needs. _J. Geophys Res. Atmos._ 107, LBA 54-1-LBA 54-6 (2002). Google Scholar * Ramos da Silva, R. & Avissar, R. The hydrometeorology of a
deforested region of the Amazon Basin. _J. Hydrometeorol._ 7, 1028–1042 (2006). Article Google Scholar * Avissar, R. & Liu, Y. Three-dimensional numerical study of shallow convective
clouds and precipitation induced by land surface forcing. _J. Geophys. Res. Atmos._ 101, 7499–7518 (1996). Article Google Scholar * Gash, J. & Nobre, C. Climatic effects of Amazonian
deforestation: Some results from ABRACOS. _Bull. Am. Meteorol. Soc._ 78, 823–830 (1997). Article Google Scholar * Correia, F. W. S, Alvala, R. C. S. & Manzi, A. O. Modeling the impacts
of land cover change in Amazonia: a regional climate model (RCM) simulation study. _Theor. Appl. Climatol._ 93, 225–244 (2008). Article Google Scholar * Silva Dias, M. A. F. &
Regnier, P. in _Amazonian Deforestation and Climate_ (eds Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 531–547 (Wiley, 1996). Google Scholar * Baidya Roy, S. &
Avissar, R. Scales of response of the convective boundary layer to land-surface heterogeneity. _Geophys. Res. Lett._ 27, 533–536 (2000). Article Google Scholar * Souza, E. P., Renno, N. O.
& Silva Dias, M. A. F. Convective circulations induced by surface heterogeneities. _J. Atmos. Sci._ 57, 2915–2922 (2000). Article Google Scholar * Wang, J., Bras, R. L. & Eltahir,
E. A. The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. _J.Hydrometeorol._ 1, 267–286 (2000). Article Google Scholar * Weaver, C. P.
& Avissar, R. Atmospheric disturbances caused by human modification of the landscape. _Bull. Am. Meteorol. Soc._ 82, 269–281 (2001). Article Google Scholar * Baidya Roy, S. &
Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. _J. Geophys. Res. Atmos._ 107, LBA 4-1-LBA 4-12 (2002). Article Google Scholar * Saad, S. I., da
Rocha, H. R., Silva Dias, M. A. F. & Rosolem, R. Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 highway region. _Earth Interact._ 14, 18
(2010). Article Google Scholar * Negri, A., Adler, R., Xu, L. & Surratt, J. The impact of Amazonian deforestation on dry season rainfall. _J. Clim._ 17, 1306–1319 (2004). Article
Google Scholar * Walker, R. et al. Protecting the Amazon with protected areas. _Proc. Natl Acad. Sci. USA_ 106, 10582–10586 (2009). Article CAS Google Scholar * Henderson-Sellers, A. et
al. Tropical deforestation: Modeling local-to regional-scale climate change. _J. Geophys Res. Atmos._ 98, 7289–7315 (1993). Article Google Scholar * Zheng, X. & Eltahir, E. A. B. The
role of vegetation in the dynamics of West African monsoons. _J. Clim._ 11, 2078–2096 (1998). Article Google Scholar * Abiodun, B., Pal, J. S., Afiesimama, E., Gutowski, W. & Adedoyin,
A. Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification. _Theor. Appl. Climatol._ 93, 245–261 (2008). Article Google Scholar * Nogherotto,
R., Coppola, E., Giorgi, F. & Mariotti, L. Impact of Congo basin deforestation on the African monsoon. _Atmos. Sci. Lett._ 14, 45–51 (2013). Article Google Scholar * Baidya Roy, S.,
Walsh, P. D. & Lichstein, J. W. Can logging in equatorial Africa affect adjacent parks. _Ecol. Soc._ 10, 6 (2005). Article Google Scholar * Sen, O. L., Wang, Y. & Wang, B. Impact
of Indochina deforestation on the East Asian summer monsoon. _J. Clim._ 17, 1366–1380 (2004). Article Google Scholar * Sen, O. L. et al. Hydro-climatic effects of future
land-cover/land-use change in montane mainland southeast Asia. _Climatic Change_ 118, 213–226 (2013). Article Google Scholar * Calvet, J. C. et al. 1997. Mapping surface parameters for
mesoscale modeling in forested and deforested south-western Amazonia. _Bull. Am. Meteorol. Soc._ 78, 413–423 (1997). Article Google Scholar * Da Rocha, H.R. et al. Seasonality of water and
heat fluxes over a tropical forest in eastern Amazonia. _Ecol. Appl._ 14, S22–S32 (2004). Article Google Scholar * Von Randow, C. et al. Comparative measurements and seasonal variations
in energy and carbon exchange over forest and pasture in South West Amazonia. _Theor. Appl. Climatol._ 78, 5–26 (2004). Article Google Scholar * Dubreuil, V., Debortoli, N., Funatsu, B.,
Nédélec, V. & Durieux, L. Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. _Environ. Monit. Assess._ 184,
877–891 (2012). Article Google Scholar * Huete, A. R. et al. 2006. Amazon rainforests green-up with sunlight in dry season. _Geophys. Res. Lett._ 33, L06405 (2006). Article Google Scholar
* Saleska, S. R., Didan, K., Huete, A. R. & da Rocha, H. R. Amazon forests green-up during 2005 drought. _Science_ 318, 612. (2007). Article CAS Google Scholar * Chu, P. S., Yu, Z.
P. & Hastenrath, S. Detecting climate change concurrent with deforestation in the Amazon basin: Which way has it gone? _Bull. Am. Meteorol. Soc._ 75, 579–583 (1994). Article Google
Scholar * Cutrim, E., Martin, D. W. & Rabin, R. Enhancement of cumulus clouds over deforested lands in Amazonia. _Bull. Am. Meteorol. Soc._ 76, 1801–1805 (1995). Article Google Scholar
* Chagnon, F., Bras, R. & Wang, J. Climatic shift in patterns of shallow clouds over the Amazon. _Geophys. Res. Lett._ 31, L24212 (2004). Article Google Scholar * Wang, J. et al.
Impact of deforestation in the Amazon basin on cloud climatology. _Proc. Natl Acad. Sci. USA_ 106, 3670–3674 (2009). Article CAS Google Scholar * Lawton, R. O., Nair, U. S., Pielke, R. A.
& Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. _Science_ 294, 584–587 (2001). CAS Google Scholar * Nair, U. S., Lawton, R. O.,
Welch, R. M. & Pielke R. A. Sr Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. _J. Geophys.
Res._ 108, 4206. (2003). Article Google Scholar * Webb, T. J., Woodward, F. I., Hannah, L. & Gaston, K. J. Forest cover–rainfall relationships in a biodiversity hotspot: the Atlantic
forest of Brazil. _Ecol. Appl._ 15, 1968–1983 (2005). Article Google Scholar * Butt, N., de Oliveira, P. A. & Costa, M. H. Evidence that deforestation affects the onset of the rainy
season in Rondonia, Brazil. _J. Geophys. Res. Atmos._ 116, D11120 (2011). Article Google Scholar * Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation
scenarios on the duration of the dry season in the arc of deforestation. _Int. J. Climatol._ 30, 1970–1979 (2009). Article Google Scholar * Chagnon, F. J. & Bras, R. L. Contemporary
climate change in the Amazon. _Geophys. Res. Lett._ 32: L13703 (2005). Article Google Scholar * Chen, T., Yoon, J., St Croix, K. & Takle, E. Suppressing impacts of the Amazonian
deforestation by the global circulation change. _Bull. Am. Meteorol. Soc._ 82, 2209–2216 (2001). Article Google Scholar * Marengo, J. A. Interdecadal variability and trends of rainfall
across the Amazon basin. _Theor. Appl. Climatol._ 78, 79–96 (2004). Article Google Scholar * Gloor, M. et al. Intensification of the Amazon hydrological cycle over the last two decades.
_Geophys. Res. Lett._ 40, 1–5 (2013). Article Google Scholar * Li, W., Fu, R., Negron-Juarez, R. I. & Fernandes, K. Observed change of the standardized precipitation index, its
potential cause and implications to future climate change in the Amazon region. _Phil. Trans. R. Soc. B_ 363, 1767–1772 (2008). Article Google Scholar * Marengo, J. A., Nobre, C. A.,
Sampaio, G., Salazar, L. F. & Borma, L. S. in _Tropical Rainforest Responses to Climatic Change_ (eds Bush, M., Flenley, J. & Gosling, W.) 259–283 (Springer, 2011). Book Google
Scholar * Espinoza Villar, J. C. et al. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). _Int. J. Climatol._ 29, 1574–1594
(2009). Article Google Scholar * Kanae, S., Oki, T. & Musiake, K. Impact of deforestation on regional precipitation over the Indochina Peninsula. _J. Hydrometeorol._ 2, 51–70 (2001).
Article Google Scholar * Kumagai, T., Kanamori, H. & Yasunari, T. Deforestation-induced reduction in rainfall. _Hydrol. Process._ 27, 3811–3814 (2013). Article Google Scholar * Yin,
X. & Gruber, A. Validation of the abrupt change in GPCP precipitation in the Congo River Basin. _Int. J. Climatol._ 30, 110–119 (2010). Google Scholar * Hulme, M., Doherty, R., Ngara,
T., New, M. & Lister, D. African climate change: 1900–2100. _Clim. Res._ 17, 145–168 (2001). Article Google Scholar * Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A.
& Rocha, E. J. P. Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. _Geophys. Res. Lett._ 34, L07706 (2007). Google Scholar
* Gordon, L. et al. Human modification of global water vapor flows from the land surface. _Proc. Natl Acad. Sci. USA._ 102, 7612–7617 (2005). Article CAS Google Scholar * Oliveira, L.
J. C., Costa, M. H., Soares-Filho, B. S. & Coe, M. T. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. _Environ. Res. Lett._ 8, 024021 (2013). Article Google
Scholar * Marengo, J. A., Nobre, C. A. & Culf, A. D. Climatic impacts of “friagens” in forested and deforested areas of the Amazon basin. _J. Appl. Meteor._ 36, 1553–1566 (1997).
Article Google Scholar * Garreaud, R. Cold air incursions over Subtropical South America: Mean structure and dynamics. _Mon. Weather Rev._ 128, 2544–2559 (2000). Article Google Scholar *
Durieux, L., Machado, L. & Laurent, H. The impact of deforestation on cloud cover over the Amazon arc of deforestation. _Remote Sens. Environ._ 86, 132–140 (2003). Article Google
Scholar * Fisch, G. et al. The convective boundary layer over pasture and forest in Amazonia. _Theor. Appl. Climatol._ 78, 47–59 (2004). Article Google Scholar * Machado, L. A. T.,
Laurent, H., Dessay, N. & Miranda, I. Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing. _Theor. Appl.
Climatol._ 78, 61–77 (2004). Article Google Scholar * Bradshaw, C. J. A., Sodhi, N. S., Peh, K. S. H. & Brook, B. W. Global evidence that deforestation amplifies flood risk and
severity in the developing world. _Glob. Change Biol._ 13, 2379–2395 (2007). Article Google Scholar * Anthes, R. A. 1984. Enhancement of convective precipitation by mesoscale variations in
vegetative covering in semiarid regions. _J. Appl. Meteorol._ 23, 541–554 (1984). Article Google Scholar Download references ACKNOWLEDGEMENTS Many thanks to Somnath Baidya Roy, Penny
Davies, Stephan DeWekker, Donna Lee, Anastassia Makarieva, Antonio Nobre, Jan Pokorny, David Werth and Daniel Zarin. Lia Cattaneo, Christopher Fender, Megan McGroddy, Amber Slatosky,
University of Virginia and the Climate and Land Use Alliance provided critical support. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Environmental Sciences, University of
Virginia Clark Hall, 291 McCormick Road, Charlottesville, 22904-4123, Virginia, USA Deborah Lawrence & Karen Vandecar Authors * Deborah Lawrence View author publications You can also
search for this author inPubMed Google Scholar * Karen Vandecar View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to
Deborah Lawrence. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information
(PDF 143 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lawrence, D., Vandecar, K. Effects of tropical deforestation on climate and agriculture.
_Nature Clim Change_ 5, 27–36 (2015). https://doi.org/10.1038/nclimate2430 Download citation * Received: 31 July 2014 * Accepted: 10 October 2014 * Published: 18 December 2014 * Issue Date:
January 2015 * DOI: https://doi.org/10.1038/nclimate2430 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable
link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative