Lactate metabolism is associated with mammalian mitochondria

feature-image

Play all audios:

Loading...

ABSTRACT It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. It is generally assumed, however,


that within the fermenting cell itself, lactate is produced to replenish NAD+ and then is secreted. Here we explore the possibility that cytosolic lactate is metabolized by the mitochondria


of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. Using high-resolution mass


spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated


mitochondria incubated in lactate, but not of isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the


mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


GLUCOSE FEEDS THE TRICARBOXYLIC ACID CYCLE VIA EXCRETED ETHANOL IN FERMENTING YEAST Article 15 August 2022 WARBURG-ASSOCIATED ACIDIFICATION REPRESSES LACTIC FERMENTATION INDEPENDENTLY OF


LACTATE, CONTRIBUTION FROM REAL-TIME NMR ON CELL-FREE SYSTEMS Article Open access 18 October 2023 LACTATE: THE UGLY DUCKLING OF ENERGY METABOLISM Article 20 July 2020 REFERENCES * Lehninger,


A., Nelson, D. & Cox, M.E. _Lehninger Principles of Biochemistry_ (W.H. Freeman and Company, 2008). * Cori, C.F. & Cori, G.T. Carbohydrate metabolism. _Annu. Rev. Biochem._ 15,


193–218 (1946). Article  CAS  Google Scholar  * Nielsen, H.B., Clemmesen, J.O., Skak, C., Ott, P. & Secher, N.H. Attenuated hepatosplanchnic uptake of lactate during intense exercise in


humans. _J. Appl. Physiol._ 92, 1677–1683 (2002). Article  CAS  Google Scholar  * Bonvento, G., Herard, A.-S. & Voutsinos-Porche, B. The astrocyte–neuron lactate shuttle: a debated but


still valuable hypothesis for brain imaging. _J. Cereb. Blood Flow Metab._ 25, 1394–1399 (2005). Article  CAS  Google Scholar  * Pavlides, S. et al. The reverse Warburg effect: aerobic


glycolysis in cancer associated fibroblasts and the tumor stroma. _Cell Cycle_ 8, 3984–4001 (2009). Article  CAS  Google Scholar  * Kane, D.A. Lactate oxidation at the mitochondria: a


lactate-malate-aspartate shuttle at work. _Front. Neurosci._ 8, 366 (2014). Article  Google Scholar  * Hashimoto, T., Hussien, R. & Brooks, G.A. Colocalization of MCT1, CD147, and LDH in


mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. _Am. J. Physiol. Endocrinol. Metab._ 290, E1237–E1244 (2006). Article  CAS  Google


Scholar  * Brooks, G.A., Dubouchaud, H., Brown, M., Sicurello, J.P. & Butz, C.E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.


_Proc. Natl. Acad. Sci. USA_ 96, 1129–1134 (1999). Article  CAS  Google Scholar  * Chen, Y.-J. et al. Differential incorporation of glucose into biomass during Warburg metabolism.


_Biochemistry_ 53, 4755–4757 (2014). Article  CAS  Google Scholar  * Brandt, R.B., Laux, J.E., Spainhour, S.E. & Kline, E.S. Lactate dehydrogenase in rat mitochondria. _Arch. Biochem.


Biophys._ 259, 412–422 (1987). Article  CAS  Google Scholar  * Markert, C.L., Shaklee, J.B. & Whitt, G.S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the


evolution of gene structure, function and regulation. _Science._ 189, 102–114 (1975). Article  CAS  Google Scholar  * Takasu, T. & Hughes, B.P. Lactate dehydrogenase isozyme patterns in


human skeletal muscle. I. Variation of isozyme pattern in the adult. _J. Neurol. Neurosurg. Psychiatry_ 32, 175–179 (1969). Article  CAS  Google Scholar  * Sjödin, B. Lactate dehydrogenase


in human skeletal muscle. _Acta Physiol. Scand. Suppl._ 436, 1–32 (1976). PubMed  Google Scholar  * Shaw, C.R. & Barto, E. Genetic evidence for the subunit structure of lactate


dehydrogenase isozymes. _Proc. Natl. Acad. Sci. USA_ 50, 211–214 (1963). Article  CAS  Google Scholar  * Dawson, D.M., Goodfriend, T.L. & Kaplan, N.O. Lactic dehydrogenases: functions of


the two types. _Science_ 143, 929–933 (1964). Article  CAS  Google Scholar  * Doherty, J.R. & Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. _J. Clin. Invest._


123, 3685–3692 (2013). Article  CAS  Google Scholar  * Elustondo, P.A. et al. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. _J. Biol.


Chem._ 288, 25309–25317 (2013). Article  CAS  Google Scholar  * Brooks, G.A. Intra- and extra-cellular lactate shuttles. _Med. Sci. Sports Exerc._ 32, 790–799 (2000). Article  CAS  Google


Scholar  * van Hall, G. et al. Blood lactate is an important energy source for the human brain. _J. Cereb. Blood Flow Metab._ 29, 1121–1129 (2009). Article  CAS  Google Scholar  * Gladden,


L.B. Lactate metabolism: a new paradigm for the third millennium. _J. Physiol. (Lond.)_ 558, 5–30 (2004). Article  CAS  Google Scholar  * Kennedy, B.W.C., Kettunen, M.I., Hu, D.-E. &


Brindle, K.M. Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized l-[1-(13)C,U-(2)H]lactate. _J. Am. Chem. Soc._ 134, 4969–4977


(2012). Article  CAS  Google Scholar  * Greenhouse, W.V. & Lehninger, A.L. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring


tumor cells. _Cancer Res._ 37, 4173–4181 (1977). CAS  PubMed  Google Scholar  * Chiaretti, B., Casciaro, A., Minotti, G., Eboli, M.L. & Galeotti, T. Quantitative evaluation of the


activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells. _Cancer Res._ 39, 2195–2199 (1979). CAS  PubMed  Google Scholar  * Bücher, T. & Klingenberg, M. Wege des


Wasserstoffs in der lebendigen Organisation. _Angew. Chem._ 70, 552–570 (1958). Article  Google Scholar  * O'Donnell, J.M., Kudej, R.K., LaNoue, K.F., Vatner, S.F. & Lewandowski,


E.D. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload. _Am. J. Physiol. Heart Circ. Physiol._ 286, H2237–H2242 (2004). Article  CAS  Google Scholar  * Hashimoto,


T., Hussien, R., Cho, H.-S., Kaufer, D. & Brooks, G.A. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate


shuttles. _PLoS ONE_ 3, e2915 (2008). Article  Google Scholar  * Ivanisevic, J. et al. Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage


of lipid and central carbon metabolism. _Anal. Chem._ 85, 6876–6884 (2013). Article  CAS  Google Scholar  * Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional


mitochondria from mouse liver, muscle and cultured fibroblasts. _Nat. Protoc._ 2, 287–295 (2007). Article  CAS  Google Scholar  * Schugar, R.C., Huang, X., Moll, A.R., Brunt, E.M. &


Crawford, P.A. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet. _PLoS ONE_ 8, e74806 (2013). Article  CAS  Google


Scholar  * Lanza, I.R. & Nair, K.S. Functional assessment of isolated mitochondria in vitro. _Methods Enzymol._ 457, 349–372 (2009). Article  CAS  Google Scholar  * Kuznetsov, A.V. et


al. Analysis of mitochondrial function _in situ_ in permeabilized muscle fibers, tissues and cells. _Nat. Protoc._ 3, 965–976 (2008). Article  CAS  Google Scholar  * Rogers, G.W. et al. High


throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. _PLoS ONE_ 6, e21746 (2011). Article  CAS  Google Scholar  * Stueber, D., Mehta, A.K.,


Chen, Z., Wooley, K.L. & Schaefer, J. Local order in polycarbonate glasses by 13C{19F} rotational-echo double-resonance NMR. _J. Polym. Sci. B Polym. Phys._ 44, 2760–2775 (2006). Article


  CAS  Google Scholar  * Chambers, M.C. et al. A cross-platform toolkit for mass spectrometry and proteomics. _Nat. Biotechnol._ 30, 918–920 (2012). Article  CAS  Google Scholar  * Mahieu,


N.G., Spalding, J.L. & Patti, G.J. Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis. _Bioinformatics_ 32, 268–275 (2016). CAS  PubMed


  Google Scholar  * Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics. _Anal. Chem._ 86, 1632–1639 (2014). Article  CAS  Google Scholar  Download


references ACKNOWLEDGEMENTS This work was supported by funding from the National Institutes of Health grants R01 ES022181 (G.J.P.), R21 CA191097-01A1 (G.J.P.), R01 HL118639-03 (R.W.G.), R01


DK091538 (P.A.C.), and R01 EB002058 (J.S.), as well as grants from the Alfred P. Sloan Foundation (G.J.P.), the Camille & Henry Dreyfus Foundation (G.J.P.), and the Pew Scholars Program


in the Biomedical Sciences (G.J.P.). We thank W. Beatty at Washington University's Molecular Microbiology Imaging Facility for acquiring the TEM images. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Chemistry, Washington University, St. Louis, Missouri, USA Ying-Jr Chen, Nathaniel G Mahieu, Manmilan Singh, Jacob Schaefer & Gary J Patti * Department of


Genetics, Washington University School of Medicine, St. Louis, Missouri, USA Xiaojing Huang & Stephen L Johnson * Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida,


USA Xiaojing Huang & Peter A Crawford * Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Richard W Gross & Gary J Patti Authors * Ying-Jr


Chen View author publications You can also search for this author inPubMed Google Scholar * Nathaniel G Mahieu View author publications You can also search for this author inPubMed Google


Scholar * Xiaojing Huang View author publications You can also search for this author inPubMed Google Scholar * Manmilan Singh View author publications You can also search for this author


inPubMed Google Scholar * Peter A Crawford View author publications You can also search for this author inPubMed Google Scholar * Stephen L Johnson View author publications You can also


search for this author inPubMed Google Scholar * Richard W Gross View author publications You can also search for this author inPubMed Google Scholar * Jacob Schaefer View author


publications You can also search for this author inPubMed Google Scholar * Gary J Patti View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


Y.-J.C. prepared samples, carried out biochemical assays, and performed LC/MS analyses. Y.-J.C., M.S., and J.S. performed NMR analyses. Y.-J.C., N.G.M., X.H., M.S., P.A.C., S.L.J., R.W.G.,


J.S., and G.J.P. contributed to experimental design and data interpretation. Y.-J.C., N.G.M., and G.J.P. wrote the manuscript. CORRESPONDING AUTHOR Correspondence to Gary J Patti. ETHICS


DECLARATIONS COMPETING INTERESTS G.J.P. is a scientific advisory board member for Cambridge Isotope Laboratories, Tewksbury, Massachusetts, USA. R.W.G. has financial relationships with


LipoSpectrum and Platomics. P.A.C. serves as a consultant and on a scientific advisory board for Janssen Pharmaceuticals, Titusville, New Jersey, USA. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


TEXT AND FIGURES Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–3. (PDF 13674 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Chen, YJ., Mahieu, N., Huang, X. _et al._ Lactate metabolism is associated with mammalian mitochondria. _Nat Chem Biol_ 12, 937–943 (2016). https://doi.org/10.1038/nchembio.2172


Download citation * Received: 15 June 2015 * Accepted: 16 June 2016 * Published: 12 September 2016 * Issue Date: November 2016 * DOI: https://doi.org/10.1038/nchembio.2172 SHARE THIS ARTICLE


Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative