Evolutionary relationship of two ancient protein superfolds

feature-image

Play all audios:

Loading...

ABSTRACT Proteins are the molecular machines of the cell that fold into specific three-dimensional structures to fulfill their functions. To improve our understanding of how the structure


and function of proteins arises, it is crucial to understand how evolution has generated the structural diversity we observe today. Classically, proteins that adopt different folds are


considered to be nonhomologous. However, using state-of-the-art tools for homology detection, we found evidence of homology between proteins of two ancient and highly populated protein


folds, the (βα)8-barrel and the flavodoxin-like fold. We detected a family of sequences that show intermediate features between both folds and determined what is to our knowledge the first


representative crystal structure of one of its members, giving new insights into the evolutionary link of two of the earliest folds. Our findings contribute to an emergent vision where


protein superfolds share common ancestry and encourage further approaches to complete the mapping of structure space onto sequence space. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


SEQUENCE-STRUCTURE-FUNCTION RELATIONSHIPS IN THE MICROBIAL PROTEIN UNIVERSE Article Open access 26 April 2023 IDENTIFICATION OF COEVOLVING POSITIONS BY ANCESTRAL RECONSTRUCTION Article Open


access 28 February 2025 PHASE SEPARATION DRIVEN BY INTERCHANGEABLE PROPERTIES IN THE INTRINSICALLY DISORDERED REGIONS OF PROTEIN PARALOGS Article Open access 29 April 2022 ACCESSION CODES


PRIMARY ACCESSIONS PROTEIN DATA BANK * 4Q37 REFERENCED ACCESSIONS PROTEIN DATA BANK * 1I9C * 1THF * 1TMY * 1WA3 * 1ZFJ * 2YXB * 3IGS * 4JGI REFERENCES * Doolittle, R.F. Similar amino acid


sequences: chance or common ancestry? _Science_ 214, 149–159 (1981). CAS  PubMed  Google Scholar  * Chothia, C. Proteins. One thousand families for the molecular biologist. _Nature_ 357,


543–544 (1992). CAS  PubMed  Google Scholar  * McLaughlin, R.N. Jr., Poelwijk, F.J., Raman, A., Gosal, W.S. & Ranganathan, R. The spatial architecture of protein function and adaptation.


_Nature_ 491, 138–142 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Huang, J., Koide, A., Makabe, K. & Koide, S. Design of protein function leaps by directed domain interface


evolution. _Proc. Natl. Acad. Sci. USA_ 105, 6578–6583 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Koga, N. et al. Principles for designing ideal protein structures. _Nature_ 491,


222–227 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Orengo, C.A., Jones, D.T. & Thornton, J.M. Protein superfamilies and domain superfolds. _Nature_ 372, 631–634 (1994). CAS


  PubMed  Google Scholar  * Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and


structures. _J. Mol. Biol._ 247, 536–540 (1995). CAS  PubMed  Google Scholar  * Holm, L. & Sander, C. Mapping the protein universe. _Science_ 273, 595–603 (1996). CAS  PubMed  Google


Scholar  * Murzin, A.G. How far divergent evolution goes in proteins. _Curr. Opin. Struct. Biol._ 8, 380–387 (1998). CAS  PubMed  Google Scholar  * Grishin, N.V. Fold change in evolution of


protein structures. _J. Struct. Biol._ 134, 167–185 (2001). CAS  PubMed  Google Scholar  * Lupas, A.N., Ponting, C.P. & Russell, R.B. On the evolution of protein folds: are similar


motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? _J. Struct. Biol._ 134, 191–203 (2001). CAS  PubMed  Google Scholar  *


Roessler, C.G. et al. Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds. _Proc. Natl. Acad. Sci. USA_ 105,


2343–2348 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Ammelburg, M. et al. A CTP-dependent archaeal riboflavin kinase forms a bridge in the evolution of cradle-loop barrels.


_Structure_ 15, 1577–1590 (2007). CAS  PubMed  Google Scholar  * Höcker, B., Schmidt, S. & Sterner, R. A common evolutionary origin of two elementary enzyme folds. _FEBS Lett._ 510,


133–135 (2002). PubMed  Google Scholar  * Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. _Nucleic Acids Res._ 25, 3389–3402 (1997).


CAS  PubMed  PubMed Central  Google Scholar  * Söding, J. Protein homology detection by HMM-HMM comparison. _Bioinformatics_ 21, 951–960 (2005). PubMed  Google Scholar  * Remmert, M.,


Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. _Nat. Methods_ 9, 173–175 (2012). CAS  Google Scholar  * Alva, V.,


Remmert, M., Biegert, A., Lupas, A.N. & Söding, J. A galaxy of folds. _Protein Sci._ 19, 124–130 (2010). CAS  PubMed  Google Scholar  * Sterner, R. & Höcker, B. Catalytic


versatility, stability, and evolution of the (βα)8-barrel enzyme fold. _Chem. Rev._ 105, 4038–4055 (2005). CAS  PubMed  Google Scholar  * Jiang, L. et al. _De novo_ computational design of


retro-aldol enzymes. _Science_ 319, 1387–1391 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design.


_Nature_ 453, 190–195 (2008). PubMed  Google Scholar  * Privett, H.K. et al. Iterative approach to computational enzyme design. _Proc. Natl. Acad. Sci. USA_ 109, 3790–3795 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Höcker, B., Claren, J. & Sterner, R. Mimicking enzyme evolution by generating new (βα)8-barrels from (βα)4-half-barrels. _Proc. Natl. Acad. Sci.


USA_ 101, 16448–16453 (2004). PubMed  PubMed Central  Google Scholar  * Bharat, T.A., Eisenbeis, S., Zeth, K. & Höcker, B. A βα-barrel built by the combination of fragments from


different folds. _Proc. Natl. Acad. Sci. USA_ 105, 9942–9947 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Eisenbeis, S. et al. Potential of fragment recombination for rational


design of proteins. _J. Am. Chem. Soc._ 134, 4019–4022 (2012). CAS  PubMed  Google Scholar  * Bollen, Y.J. & van Mierlo, C.P. Protein topology affects the appearance of intermediates


during the folding of proteins with a flavodoxin-like fold. _Biophys. Chem._ 114, 181–189 (2005). CAS  PubMed  Google Scholar  * Nelson, E.D. & Grishin, N.V. Alternate pathways for


folding in the flavodoxin fold family revealed by a nucleation-growth model. _J. Mol. Biol._ 358, 646–653 (2006). CAS  PubMed  Google Scholar  * Hills, R.D. Jr. et al. Topological


frustration in βα-repeat proteins: sequence diversity modulates the conserved folding mechanisms of αβα sandwich proteins. _J. Mol. Biol._ 398, 332–350 (2010). CAS  PubMed  PubMed Central 


Google Scholar  * Yuan, J., Branch, R.W., Hosu, B.G. & Berg, H.C. Adaptation at the output of the chemotaxis signalling pathway. _Nature_ 484, 233–236 (2012). CAS  PubMed  PubMed Central


  Google Scholar  * Drennan, C.L., Huang, S., Drummond, J.T., Matthews, R.G. & Lidwig, M.L. How a protein binds B12: A 3.0 Å X-ray structure of B12-binding domains of methionine


synthase. _Science_ 266, 1669–1674 (1994). CAS  PubMed  Google Scholar  * Caetano-Anollés, G., Kim, H.S. & Mittenthal, J.E. The origin of modern metabolic networks inferred from


phylogenomic analysis of protein architecture. _Proc. Natl. Acad. Sci. USA_ 104, 9358–9363 (2007). PubMed  PubMed Central  Google Scholar  * Koonin, E.V., Wolf, Y.I. & Karev, G.P. The


structure of the protein universe and genome evolution. _Nature_ 420, 218–223 (2002). CAS  PubMed  Google Scholar  * Ma, B.G. et al. Characters of very ancient proteins. _Biochem. Biophys.


Res. Commun._ 366, 607–611 (2008). CAS  PubMed  Google Scholar  * Copley, R.R. & Bork, P. Homology among (βα)8 barrels: implications for the evolution of metabolic pathways. _J. Mol.


Biol._ 303, 627–641 (2000). CAS  PubMed  Google Scholar  * Nagano, N., Orengo, C.A. & Thornton, J.M. One fold with many functions: the evolutionary relationships between TIM barrel


families based on their sequences, structures and functions. _J. Mol. Biol._ 321, 741–765 (2002). CAS  PubMed  Google Scholar  * Kopec, K.O. & Lupas, A.N. β-Propeller blades as ancestral


peptides in protein evolution. _PLoS ONE_ 8, e77074 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Remmert, M., Biegert, A., Linke, D., Lupas, A.N. & Söding, J. Evolution of


outer membrane β-barrels from an ancestral ββ hairpin. _Mol. Biol. Evol._ 27, 1348–1358 (2010). CAS  PubMed  Google Scholar  * Marchler-Bauer, A. et al. CDD: conserved domains and protein


three-dimensional structure. _Nucleic Acids Res._ 41, D348–D352 (2013). CAS  PubMed  Google Scholar  * Sander, C. & Schneider, R. Database of homology-derived protein structures and the


structural meaning of sequence alignment. _Proteins_ 9, 56–68 (1991). CAS  PubMed  Google Scholar  * Rost, B. Twilight zone of protein sequence alignments. _Protein Eng._ 12, 85–94 (1999).


CAS  PubMed  Google Scholar  * Alifano, P. et al. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. _Microbiol. Rev._ 60, 44–69 (1996). CAS  PubMed  PubMed


Central  Google Scholar  * Lang, D., Thoma, R., Henn-Sax, M., Sterner, R. & Wilmanns, M. Structural evidence for evolution of the β/α barrel scaffold by gene duplication and fusion.


_Science_ 289, 1546–1550 (2000). CAS  PubMed  Google Scholar  * Höcker, B., Beismann-Driemeyer, S., Hettwer, S., Lustig, A. & Sterner, R. Dissection of a (βα)8-barrel enzyme into two


folded halves. _Nat. Struct. Biol._ 8, 32–36 (2001). PubMed  Google Scholar  * Claren, J., Malisi, C., Höcker, B. & Sterner, R. Establishing wild-type levels of catalytic activity on


natural and artificial (βα)8-barrel protein scaffolds. _Proc. Natl. Acad. Sci. USA_ 106, 3704–3709 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Söding, J., Remmert, M. &


Biegert, A. HHrep: _de novo_ protein repeat detection and the origin of TIM barrels. _Nucleic Acids Res._ 34, W137–W142 (2006). PubMed  PubMed Central  Google Scholar  * Richter, M. et al.


Computational and experimental evidence for the evolution of a (βα)8-barrel protein from an ancestral quarter-barrel stabilised by disulfide bonds. _J. Mol. Biol._ 398, 763–773 (2010). CAS 


PubMed  Google Scholar  * Cech, T.R. The RNA worlds in context. _Cold Spring Harb. Perspect. Biol._ 4, a006742 (2012). PubMed  PubMed Central  Google Scholar  * Höcker, B. Structural


biology: a toolbox for protein design. _Nature_ 491, 204–205 (2012). PubMed  Google Scholar  * Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology


detection and structure prediction. _Nucleic Acids Res._ 33, W244–W248 (2005). PubMed  PubMed Central  Google Scholar  * Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment


algorithm based on the TM-score. _Nucleic Acids Res._ 33, 2302–2309 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Frickey, T. & Lupas, A. CLANS: a Java application for


visualizing protein families based on pairwise similarity. _Bioinformatics_ 20, 3702–3704 (2004). CAS  PubMed  Google Scholar  * Biegert, A., Mayer, C., Remmert, M., Söding, J. & Lupas,


A.N. The MPI Bioinformatics Toolkit for protein sequence analysis. _Nucleic Acids Res._ 34, W335–W339 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Krissinel, E. & Henrick, K.


Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. _Acta Crystallogr. D Biol. Crystallogr._ 60, 2256–2268 (2004). CAS  PubMed  Google


Scholar  * Krauth-Siegel, R.L. et al. Crystallization and preliminary crystallographic analysis of trypanothione reductase from _Trypanosoma cruzi_, the causative agent of Chagas'


disease. _FEBS Lett._ 317, 105–108 (1993). CAS  PubMed  Google Scholar  * Sheldrick, G.M. A short history of SHELX. _Acta Crystallogr. A_ 64, 112–122 (2008). CAS  PubMed  Google Scholar  *


Rice, L.M., Earnest, T.N. & Brunger, A.T. Single-wavelength anomalous diffraction phasing revisited. _Acta Crystallogr. D Biol. Crystallogr._ 56, 1413–1420 (2000). CAS  PubMed  Google


Scholar  * Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments


in and around SHARP 2.0. _Acta Crystallogr. D Biol. Crystallogr._ 59, 2023–2030 (2003). CAS  PubMed  Google Scholar  * Adams, P.D. et al. PHENIX: a comprehensive Python-based system for


macromolecular structure solution. _Acta Crystallogr. D Biol. Crystallogr._ 66, 213–221 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Cowtan, K. The Buccaneer software for automated


model building. 1. Tracing protein chains. _Acta Crystallogr. D Biol. Crystallogr._ 62, 1002–1011 (2006). PubMed  Google Scholar  * Emsley, P. & Cowtan, K. Coot: model-building tools


for molecular graphics. _Acta Crystallogr. D Biol. Crystallogr._ 60, 2126–2132 (2004). PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank S. Toledo-Patiño, V. Alva and J.


Söding for discussions. We are grateful to the crystallography community at the Max Planck Institute for their support. This work was supported by Deutsche Forschungsgemeinschaft grant HO


4022/1-2. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Max Planck Institute for Developmental Biology, Tübingen, Germany José Arcadio Farías-Rico, Steffen Schmidt & Birte Höcker Authors


* José Arcadio Farías-Rico View author publications You can also search for this author inPubMed Google Scholar * Steffen Schmidt View author publications You can also search for this


author inPubMed Google Scholar * Birte Höcker View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS J.A.F.-R. and B.H. designed the research;


J.A.F.-R. performed the experiments; J.A.F.-R., S.S. and B.H. analyzed the data; and J.A.F.-R. and B.H. wrote the manuscript. CORRESPONDING AUTHOR Correspondence to Birte Höcker. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Results, Supplementary Figures


1–7 and Supplementary Tables 1 and 2. (PDF 13146 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Farías-Rico, J., Schmidt, S. & Höcker, B.


Evolutionary relationship of two ancient protein superfolds. _Nat Chem Biol_ 10, 710–715 (2014). https://doi.org/10.1038/nchembio.1579 Download citation * Received: 13 March 2014 * Accepted:


02 June 2014 * Published: 13 July 2014 * Issue Date: September 2014 * DOI: https://doi.org/10.1038/nchembio.1579 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative