How do metal ions direct ribozyme folding?

feature-image

Play all audios:

Loading...

ABSTRACT Ribozymes, which carry out phosphoryl-transfer reactions, often require Mg2+ ions for catalytic activity. The correct folding of the active site and ribozyme tertiary structure is


also regulated by metal ions in a manner that is not fully understood. Here we employ coarse-grained molecular simulations to show that individual structural elements of the group I ribozyme


from the bacterium _Azoarcus_ form spontaneously in the unfolded ribozyme even at very low Mg2+ concentrations, and are transiently stabilized by the coordination of Mg2+ ions to specific


nucleotides. However, competition for scarce Mg2+ and topological constraints that arise from chain connectivity prevent the complete folding of the ribozyme. A much higher Mg2+


concentration is required for complete folding of the ribozyme and stabilization of the active site. When Mg2+ is replaced by Ca2+ the ribozyme folds, but the active site remains unstable.


Our results suggest that group I ribozymes utilize the same interactions with specific metal ligands for both structural stability and chemical activity. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and


online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS MAGNESIUM IONS MEDIATE LIGAND BINDING AND CONFORMATIONAL TRANSITION OF THE SAM/SAH RIBOSWITCH Article Open access 31 July 2023 A HAMMERHEAD RIBOZYME SELECTS MECHANICALLY STABLE


CONFORMATIONS FOR CATALYSIS AGAINST VIRAL RNA Article Open access 03 February 2025 CATION-INDUCED INTRAMOLECULAR COIL-TO-GLOBULE TRANSITION IN POLY(ADP-RIBOSE) Article Open access 10


September 2024 REFERENCES * Cech, T. R., Zaug, A. J. & Grabowski, P. J. _In vitro_ splicing of the ribosomal-RNA precursor of _Tetrahymena_—involvement of a guanosine nucleotide in the


excision of the intervening sequence. _Cell_ 27, 487–496 (1981). Article  CAS  Google Scholar  * Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of


ribonuclease-P is the catalytic subunit of the enzyme. _Cell_ 35, 849–857 (1983). Article  CAS  Google Scholar  * Doudna, J. & Cech, T. The chemical repertoire of natural ribozymes.


_Nature_ 418, 222–228 (2002). Article  CAS  Google Scholar  * Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the _Tetrahymena_ ribozyme reaction.


_Nature_ 361, 85–88 (1993). Article  CAS  Google Scholar  * Weinstein, L. B., Jones, B. C. N. M., Cosstick, R. & Cech, T. R. A second catalytic metal ion in a group I ribozyme. _Nature_


388, 805–808 (1997). Article  CAS  Google Scholar  * Shan, S., Yoshida, A., Sun, S., Piccirilli, J. A. & Herschlag, D. Three metal ions at the active site of the _Tetrahymena_ group I


ribozyme. _Proc. Natl Acad. Sci. USA_ 96, 12299–12304 (1999). Article  CAS  Google Scholar  * Stahley, M. R. & Strobel, S. A. Structural evidence for a two-metal–ion mechanism of group I


intron splicing. _Science_ 309, 1587–1590 (2005). Article  CAS  Google Scholar  * Wilcox, J. L., Ahluwalia, A. K. & Bevilacqua, P. C. Charged nucleobases and their potential for RNA


catalysis. _Acc. Chem. Res._ 44, 1270–1279 (2011). Article  CAS  Google Scholar  * Bowman, J. C., Lenz, T. K., Hud, N. V. & Williams, L. D. Cations in charge: magnesium ions in RNA


folding and catalysis. _Curr. Opin. Struct. Biol._ 22, 262–272 (2012). Article  CAS  Google Scholar  * Orr, J. W., Hagerman, P. J. & Williamson, J. R. Protein and Mg2+-induced


conformational changes in the S15 binding site of 16S ribosomal RNA. _J. Mol. Biol._ 275, 453–464 (1998). Article  CAS  Google Scholar  * Treiber, D. K., Rook, M. S., Zarrinkar, P. P. &


Williamson, J. R. Kinetic intermediates trapped by native interactions in RNA folding. _Science_ 279, 1943–1946 (1998). Article  CAS  Google Scholar  * Rangan, P. & Woodson, S. A.


Structural requirement for Mg2+ binding in the group I intron core. _J. Mol. Biol._ 329, 229–238 (2003). Article  CAS  Google Scholar  * Draper, D. E. RNA folding: thermodynamic and


molecular descriptions of the roles of ions. _Biophys. J._ 95, 5489–5495 (2008). Article  CAS  Google Scholar  * Behrouzi, R., Roh, J. H., Kilburn, D., Briber, R. M. & Woodson, S. A.


Cooperative tertiary interaction network guides RNA folding. _Cell_ 149, 348–357 (2012). Article  CAS  Google Scholar  * Heilman-Miller, S. L., Thirumalai, D. & Woodson, S. A. Role of


counterion condensation in folding of the _Tetrahymena_ ribozyme. I. Equilibrium stabilization by cations. _J. Mol. Biol._ 306, 1157–1166 (2001). Article  CAS  Google Scholar  * Fedorova,


O., Waldsich, C. & Pyle, A. M. Group II intron folding under near-physiological conditions: collapsing to the near-native state. _J. Mol. Biol._ 366, 1099–1114 (2007). Article  CAS 


Google Scholar  * Tan, Z.-J. & Chen, S.-J. Salt contribution to RNA tertiary structure folding stability. _Biophys. J._ 101, 176–187 (2011). Article  CAS  Google Scholar  * Chen, S.-J.


RNA folding: conformational statistics, folding kinetics, and ion electrostatics. _Ann. Rev. Biophys._ 37, 197–214 (2008). Article  CAS  Google Scholar  * Kirmizialtin, S., Pabit, S. A.,


Meisburger, S. P., Pollack, L. & Elber, R. RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations. _Biophys. J._ 102, 819–828 (2012). Article  CAS 


Google Scholar  * Butcher, S. E. & Pyle, A. M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. _Acc. Chem. Res._ 44, 1302–1311


(2011). Article  CAS  Google Scholar  * Tanner, M. A. & Cech, T. R. Activity and thermostability of the small self-splicing group I intron in the pre-tRNAIle of the purple bacterium


_Azoarcus_. _RNA_ 2, 74–83 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a


self-splicing group I intron with both exons. _Nature_ 430, 45–50 (2004). Article  CAS  Google Scholar  * Stahley, M. R., Adams, P. L., Wang, J. & Strobel, S. A. Structural metals in the


group I intron: a ribozyme with a multiple metal ion core. _J. Mol. Biol._ 372, 89–102 (2007). Article  CAS  Google Scholar  * Cate, J. H. et al. Crystal structure of a group I ribozyme


domain: principles of RNA packing. _Science_ 273, 1678–1685 (1996). Article  CAS  Google Scholar  * Guo, F., Gooding, A. R. & Cech, T. R. Structure of the _Tetrahymena_ ribozyme: base


triple sandwich and metal ion at the active site. _Mol. Cell_ 16, 351–362 (2004). CAS  PubMed  Google Scholar  * Takamoto, K., He, Q., Morris, S., Chance, M. R. & Brenowitz, M.


Monovalent cations mediate formation of native tertiary structure of the _Tetrahymena thermophila_ ribozyme. _Nature Struct. Biol._ 9, 928–933 (2002). Article  CAS  Google Scholar  *


Chauhan, S., Behrouzi, R., Rangan, P. & Woodson, S. A. Structural rearrangements linked to global folding pathways of the _Azoarcus_ group I ribozyme. _J. Mol. Biol._ 386, 1167–1178


(2009). Article  CAS  Google Scholar  * Shaw, D. et al. Atomic-level characterization of the structural dynamics of proteins. _Science_ 330, 341–346 (2010). Article  CAS  Google Scholar  *


Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding proteins fold. _Science_ 334, 517–520 (2011). Article  CAS  Google Scholar  * Lane, T. J., Shukla, D.,


Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. _Curr. Opin. Struct. Biol._ 23, 58–65 (2012). Article  Google Scholar  *


Chen, A. A. & Garcia, A. E. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. _Proc. Natl Acad. Sci. USA_ 110, 16820–16825 (2013).


Article  CAS  Google Scholar  * Hyeon, C. & Thirumalai, D. Mechanical unfolding of RNA hairpins. _Proc. Natl Acad. Sci. USA_ 102, 6789–6794 (2005). Article  CAS  Google Scholar  * Cao,


S. & Chen, S.-J. Predicting RNA folding thermodynamics with a reduced chain representation model. _RNA_ 11, 1884–1897 (2005). Article  CAS  Google Scholar  * Denesyuk, N. A. &


Thirumalai, D. Coarse-grained model for predicting RNA folding thermodynamics. _J. Phys. Chem. B_ 117, 4901–4911 (2013). Article  CAS  Google Scholar  * Gō, N. & Abe, H. Noninteracting


local-structure model of folding and unfolding transition in globular proteins. I. Formulation. _Biopolymers_ 20, 991–1011 (1981). Article  Google Scholar  * Whitford, P. C. et al. Nonlocal


helix formation is key to understanding _S_-adenosylmethionine-1 riboswitch function. _Biophys. J._ 96, L7–L9 (2009). Article  Google Scholar  * Feng, J., Walter, N. G. & Brooks, C. L.


III . Cooperative and directional folding of the preQ(1) riboswitch aptamer domain. _J. Am. Chem. Soc._ 133, 4196–4199 (2011). Article  CAS  Google Scholar  * Lin, J.-C. & Thirumalai, D.


Relative stability of helices determines the folding landscape of adenine riboswitch aptamers. _J. Am. Chem. Soc._ 130, 14080–14081 (2008). Article  CAS  Google Scholar  * Cho, S. S.,


Pincus, D. L. & Thirumalai, D. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. _Proc. Natl Acad. Sci. USA_ 106, 17349–17354


(2009). Article  CAS  Google Scholar  * Whitford, P. C. et al. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. _RNA_ 16, 1196–1204


(2010). Article  CAS  Google Scholar  * Denesyuk, N. A. & Thirumalai, D. Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA. _J. Am. Chem. Soc._


133, 11858–11861 (2011). Article  CAS  Google Scholar  * Hayes, R. L. et al. Reduced model captures Mg2+–RNA interaction free energy of riboswitches. _Biophys. J._ 106, 1508–1519 (2014).


Article  CAS  Google Scholar  * Karbstein, K. & Herschlag, D. Extraordinarily slow binding of guanosine to the _Tetrahymena_ group I ribozyme: implications for RNA preorganization and


function. _Proc. Natl Acad. Sci. USA_ 100, 2300–2305 (2003). Article  CAS  Google Scholar  * Rangan, P., Masquida, B., Westhof, E. & Woodson, S. A. Assembly of core helices and rapid


tertiary folding of a small bacterial group I ribozyme. _Proc. Natl Acad. Sci. USA_ 100, 1574–1579 (2003). Article  CAS  Google Scholar  * Chauhan, S. et al. RNA tertiary interactions


mediate native collapse of a bacterial group I ribozyme. _J. Mol. Biol._ 353, 1199–1209 (2005). Article  CAS  Google Scholar  * Jaeger, L., Westhof, E. & Michel, F. Monitoring of the


cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3′ terminal intron components. _J. Mol.


Biol._ 234, 331–346 (1993). Article  CAS  Google Scholar  * Hasted, J. B. in _Water, a Comprehensive Treatise_ Vol. 1 (ed. Franks, F.) 255–309 (Plenum Press, 1972). Google Scholar  * Roh,


J. H. et al. Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle X-ray scattering. _J. Am. Chem. Soc._ 132, 10148–10154 (2010). Article  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by a grant from the National Science Foundation (CHE 13-61946). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institute for


Physical Science and Technology, University of Maryland, College Park, 20742, Maryland, USA Natalia A. Denesyuk & D. Thirumalai * Department of Chemistry and Biochemistry and Biophysics


Program, University of Maryland, College Park, 20742, Maryland, USA D. Thirumalai Authors * Natalia A. Denesyuk View author publications You can also search for this author inPubMed Google


Scholar * D. Thirumalai View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.A.D. and D.T. conceived and designed the project, analysed the


simulation data and co-wrote the paper. N.A.D. performed the simulations. CORRESPONDING AUTHOR Correspondence to D. Thirumalai. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information (PDF 834 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Denesyuk, N., Thirumalai, D. How do metal ions direct ribozyme folding?. _Nature Chem_ 7, 793–801 (2015). https://doi.org/10.1038/nchem.2330 Download citation * Received:


11 September 2014 * Accepted: 20 July 2015 * Published: 31 August 2015 * Issue Date: October 2015 * DOI: https://doi.org/10.1038/nchem.2330 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative