Terpene cyclization catalysed inside a self-assembled cavity

feature-image

Play all audios:

Loading...

ABSTRACT In nature, complex terpene natural products are formed by the so-called tail-to-head terpene (THT) cyclization. The cationic reaction cascade is promoted efficiently in complex


enzyme pockets, in which cationic intermediates and transition states are stabilized. In solution, the reaction is hard to control and man-made catalysts able to perform selective THT


cyclizations are lacking. We herein report the first example of a successful THT cyclization inside a supramolecular structure. The basic mode of operation in cyclase enzymes was mimicked


successfully and a catalytic non-stop THT was achieved with geranyl acetate as the substrate. The results presented have implications for the postulated reaction mechanism in cyclase


enzymes. Evidence indicates that the direct isomerization of a geranyl cation to the _cisoid_ isomer, which so far was considered unlikely, is feasible. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and


online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS ENZYME-LIKE POLYENE CYCLIZATIONS CATALYZED BY DYNAMIC, SELF-ASSEMBLED, SUPRAMOLECULAR FLUORO ALCOHOL-AMINE CLUSTERS Article Open access 13 February 2023 BIOCATALYTIC STEREOCONTROLLED


HEAD-TO-TAIL CYCLIZATIONS OF UNBIASED TERPENES AS A TOOL IN CHEMOENZYMATIC SYNTHESIS Article Open access 10 June 2024 A MONODOMAIN CLASS II TERPENE CYCLASE ASSEMBLES COMPLEX ISOPRENOID


SCAFFOLDS Article 10 August 2020 REFERENCES * Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. _Nature Chem._ 4, 915–920


(2012). Article  CAS  Google Scholar  * Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. _Chem. Rev._ 106, 3412–3442 (2006). Article  CAS  Google Scholar  *


Miller, D. J. & Allemann, R. K. Sesquiterpene synthases: passive catalysts or active players? _Nat. Prod. Rep._ 29, 60–71 (2012). Article  CAS  Google Scholar  * Croteau, R. Biosynthesis


and catabolism of monoterpenoids. _Chem. Rev._ 87, 929–954 (1987). Article  CAS  Google Scholar  * Degenhardt, J., Köllner, T. G. & Gershenzon, J. Monoterpene and sesquiterpene


synthases and the origin of terpene skeletal diversity in plants. _Phytochemistry_ 70, 1621–1637 (2009). Article  CAS  Google Scholar  * Cane, D. E. Enzymic formation of sesquiterpenes.


_Chem. Rev._ 90, 1089–1103 (1990). Article  CAS  Google Scholar  * Dickschat, J. S. Isoprenoids in three-dimensional space: the stereochemistry of terpene biosynthesis. _Nat. Prod. Rep._ 28,


1917–1936 (2011). Article  CAS  Google Scholar  * Wise, M. L. & Croteau, R. in _Comprehensive Natural Products Chemistry_ Vol. 2 (eds Barton, D., Nakanishi, K. & Meth-Cohn, O.)


97–153 (Pergamon, 1999). Book  Google Scholar  * Allinger, N. L. & Siefert, J. H. Organic quantum chemistry. XXXIII. Electronic spectra and rotational barriers of vinylborane, allyl


cation, and related compounds. _J. Am. Chem. Soc._ 97, 752–760 (1975). Article  CAS  Google Scholar  * Lesburg, C. A., Zhai, G., Cane, D. E. & Christianson, D. W. Crystal structure of


pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. _Science_ 277, 1820–1824 (1997). Article  CAS  Google Scholar  * Starks, C. M., Back, K., Chappell,


J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. _Science_ 277, 1815–1820 (1997). Article  CAS  Google Scholar  * Hof, F.,


Craig, S. L., Nuckolls, C. & Rebek, J. J. Molecular encapsulation. _Angew. Chem. Int. Ed._ 41, 1488–1508 (2002). Article  CAS  Google Scholar  * Palmer, L. C. & Rebek, J. J. The ins


and outs of molecular encapsulation. _Org. Biomol. Chem._ 2, 3051–3059 (2004). Article  CAS  Google Scholar  * Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined


self-assembled nanospace. _Chem. Soc. Rev._ 37, 247–262 (2008). Article  CAS  Google Scholar  * Rebek, J. Molecular behavior in small spaces. _Acc. Chem. Res._ 42, 1660–1668 (2009). Article


  CAS  Google Scholar  * Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. _Angew. Chem. Int.


Ed._ 48, 3418–3438 (2009). Article  CAS  Google Scholar  * Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. _Angew. Chem.


Int. Ed._ 50, 114–137 (2011). Article  CAS  Google Scholar  * Ajami, D. & Rebek, J. More chemistry in small spaces. _Acc. Chem. Res._ 46, 990–999 (2012). Article  Google Scholar  *


Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. _Chem. Soc. Rev._ 43, 1734–1787 (2014). Article  CAS 


Google Scholar  * Bocokić, V. et al. Capsule-controlled selectivity of a rhodium hydroformylation catalyst. _Nature Commun._ 4, 2670 (2013). Article  Google Scholar  * Dydio, P., Detz, R. J.


& Reek, J. N. H. Precise supramolecular control of selectivity in the Rh-catalyzed hydroformylation of terminal and internal alkenes. _J. Am. Chem. Soc._ 135, 10817–10828 (2013).


Article  CAS  Google Scholar  * Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis.


_Nature Chem._ 5, 100–103 (2013). Article  CAS  Google Scholar  * Zhao, C. et al. Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to


enantioselective catalysis of neutral substrates. _J. Am. Chem. Soc._ 135, 18802–18805 (2013). Article  CAS  Google Scholar  * Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G.


Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. _J. Am. Chem. Soc._ 136, 14409–14412 (2014). Article  CAS  Google Scholar


  * Salles, A. G., Zarra, S., Turner, R. M. & Nitschke, J. R. A self-organizing chemical assembly line. _J. Am. Chem. Soc._ 135, 19143–19146 (2013). Article  CAS  Google Scholar  *


Hart-Cooper, W. M., Clary, K. N., Toste, F. D., Bergman, R. G. & Raymond, K. N. Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates


in a supramolecular catalyst. _J. Am. Chem. Soc._ 134, 17873–17876 (2012). Article  CAS  Google Scholar  * MacGillivray, L. R. & Atwood, J. L. A chiral spherical molecular assembly held


together by 60 hydrogen bonds. _Nature_ 389, 469–472 (1997). Article  CAS  Google Scholar  * Cavarzan, A., Scarso, A., Sgarbossa, P., Strukul, G. & Reek, J. N. H. Supramolecular control


on chemo- and regioselectivity via encapsulation of (NHC)-Au catalyst within a hexameric self-assembled host. _J. Am. Chem. Soc._ 133, 2848–2851 (2011). Article  CAS  Google Scholar  *


Bianchini, G., Sorella, G. L., Canever, N., Scarso, A. & Strukul, G. Efficient isonitrile hydration through encapsulation within a hexameric self-assembled capsule and selective


inhibition by a photo-controllable competitive guest. _Chem. Commun._ 49, 5322–5324 (2013). Article  CAS  Google Scholar  * Zhang, Q. & Tiefenbacher, K. Hexameric resorcinarene capsule


is a Brønsted acid: investigation and application to synthesis and catalysis. _J. Am. Chem. Soc._ 135, 16213–16219 (2013). Article  CAS  Google Scholar  * Shivanyuk, A. & Rebek, J.


Reversible encapsulation by self-assembling resorcinarene subunits. _Proc. Natl Acad. Sci. USA_ 98, 7662–7665 (2001). Article  CAS  Google Scholar  * Avram, L. & Cohen, Y. Spontaneous


formation of hexameric resorcinarene capsule in chloroform solution as detected by diffusion NMR. _J. Am. Chem. Soc._ 124, 15148–15149 (2002). Article  CAS  Google Scholar  * Yamanaka, M.,


Shivanyuk, A. & Rebek, J. Kinetics and thermodynamics of hexameric capsule formation. _J. Am. Chem. Soc._ 126, 2939–2943 (2004). Article  CAS  Google Scholar  * Shivanyuk, A. &


Rebek, J. Assembly of resorcinarene capsules in wet solvents. _J. Am. Chem. Soc._ 125, 3432–3433 (2003). Article  CAS  Google Scholar  * Leão Lana, E. J., da Silva Rocha, K. A., Kozhevnikov,


I. V. & Gusevskaya, E. V. Synthesis of 1,8-cineole and 1,4-cineole by isomerization of α-terpineol catalyzed by heteropoly acid. _J. Mol. Catal. A_ 259, 99–102 (2006). Article  Google


Scholar  * Kelly, B. D., Allen, J. M., Tundel, R. E. & Lambert, T. H. Multicatalytic synthesis of complex tetrahydrofurans involving bismuth(III) triflate catalyzed intramolecular


hydroalkoxylation of unactivated olefins. _Org. Lett._ 11, 1381–1383 (2009). Article  CAS  Google Scholar  * Bugarčić, Z. M., Dunkić, J. D. & Mojsilović, B. M. A simple, convenient and


expeditious approach to cineol. _Heteroatom Chem._ 15, 468–470 (2004). Article  Google Scholar  * Eschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. Zur Kenntnis der Triterpene. 190.


Mitteilung. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. _Helv. Chim. Acta_ 38, 1890–1904 (1955). Article  CAS  Google Scholar  * Croteau, R.


Evidence for the ionization steps in monoterpene cyclization reactions using 2-fluorogeranyl and 2-fluorolinalyl pyrophosphates as substrates. _Arch. Biochem. Biophys._ 251, 777–782 (1986).


Article  CAS  Google Scholar  * Poulter, C. D. & King, C. H. R. Model studies of terpene biosynthesis. A stepwise mechanism for cyclization of nerol to α-terpineol. _J. Am. Chem. Soc._


104, 1422–1424 (1982). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This project was supported by the Bayerischen Akademie der Wissenschaften (Junges Kolleg), Fonds der


Chemischen Industrie (Sachkostenzuschuss), the TUM Junior Fellow Fund and the Dr.-Ing. Leonhard-Lorenz-Stiftung. The help of J. Richers with the graphical design is gratefully acknowledged.


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department Chemie, Technische Universität München, Lichtenbergstraße 4, Garching, D-85747, Germany Q. Zhang & K. Tiefenbacher Authors * Q.


Zhang View author publications You can also search for this author inPubMed Google Scholar * K. Tiefenbacher View author publications You can also search for this author inPubMed Google


Scholar CONTRIBUTIONS K.T. conceived the project and wrote the manuscript with Q.Z. Q.Z. planned and carried out the experiments. K.T. and Q.Z. discussed the experiments and results.


CORRESPONDING AUTHOR Correspondence to K. Tiefenbacher. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary information (PDF 5155 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhang, Q., Tiefenbacher, K. Terpene cyclization


catalysed inside a self-assembled cavity. _Nature Chem_ 7, 197–202 (2015). https://doi.org/10.1038/nchem.2181 Download citation * Received: 15 September 2014 * Accepted: 12 January 2015 *


Published: 16 February 2015 * Issue Date: March 2015 * DOI: https://doi.org/10.1038/nchem.2181 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative