Natural allelic variation underlying a major fitness trade-off in arabidopsis thaliana

feature-image

Play all audios:

Loading...

ABSTRACT Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and


between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack1. A second explanation comes from an evolutionary ‘tug of


war’, in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion2,3,4,5. If selection is, however, sufficiently strong,


susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment6,7,8,9,10,11. Using a combination of


forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, _ACCELERATED CELL DEATH 6_ (_ACD6_)12,13, underpins marked pleiotropic


differences in both vegetative growth and resistance to microbial infection and herbivory among natural _Arabidopsis thaliana_ strains. A hyperactive _ACD6_ allele, compared to the reference


allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature


leaves. This allele segregates at intermediate frequency both throughout the worldwide range of _A. thaliana_ and within local populations, consistent with this allele providing substantial


fitness benefits despite its marked impact on growth. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NATURAL VARIATION AT _FLM_ SPLICING HAS PLEIOTROPIC EFFECTS MODULATING


ECOLOGICAL STRATEGIES IN _ARABIDOPSIS THALIANA_ Article Open access 18 August 2020 MOLECULAR VARIATION IN A FUNCTIONALLY DIVERGENT HOMOLOG OF FCA REGULATES FLOWERING TIME IN _ARABIDOPSIS


THALIANA_ Article Open access 17 November 2020 MAPPING THE ADAPTIVE LANDSCAPE OF A MAJOR AGRICULTURAL PATHOGEN REVEALS EVOLUTIONARY CONSTRAINTS ACROSS HETEROGENEOUS ENVIRONMENTS Article Open


access 15 January 2021 ACCESSION CODES PRIMARY ACCESSIONS GENBANK/EMBL/DDBJ * HM053468 * HM053469 * HM214805 * HM214897 DATA DEPOSITS DNA sequences have been deposited in GenBank under


accession numbers HM053468 and HM053469 and HM214805 to HM214897. REFERENCES * Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. _Annu. Rev.


Phytopathol._ 43, 205–227 (2005) Article  CAS  Google Scholar  * Holub, E. B. The arms race is ancient history in _Arabidopsis_, the wildflower. _Nature Rev. Genet._ 2, 516–527 (2001)


Article  CAS  Google Scholar  * Holub, E. B. Natural variation in innate immunity of a pioneer species. _Curr. Opin. Plant Biol._ 10, 415–424 (2007) Article  CAS  Google Scholar  * Jones, J.


D. & Dangl, J. L. The plant immune system. _Nature_ 444, 323–329 (2006) Article  ADS  CAS  Google Scholar  * Bent, A. F. & Mackey, D. Elicitors, effectors, and _R_ genes: the new


paradigm and a lifetime supply of questions. _Annu. Rev. Phytopathol._ 45, 399–436 (2007) Article  CAS  Google Scholar  * Heil, M. & Baldwin, I. T. Fitness costs of induced resistance:


emerging experimental support for a slippery concept. _Trends Plant Sci._ 7, 61–67 (2002) Article  CAS  Google Scholar  * Mauricio, R. Costs of resistance to natural enemies in field


populations of the annual plant _Arabidopsis thaliana_ . _Am. Nat._ 151, 20–28 (1998) CAS  PubMed  Google Scholar  * Heil, M., Hilpert, A., Kaiser, W. & Linsenmair, K. E. Reduced growth


and seed set following chemical induction of pathogen defence: Does Systemic Acquired Resistance (SAR) incur allocation costs? _J. Ecol._ 88, 645–654 (2000) Article  CAS  Google Scholar  *


Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of _R_-gene-mediated resistance in _Arabidopsis thaliana_ . _Nature_ 423, 74–77 (2003) Article  ADS  CAS 


Google Scholar  * Zavala, J. A. & Baldwin, I. T. Fitness benefits of trypsin proteinase inhibitor expression in _Nicotiana attenuata_ are greater than their costs when plants are


attacked. _BMC Ecol._ 4, 11 (2004) Article  Google Scholar  * Korves, T. A novel cost of _R_ gene resistance in the presence of disease. _Am. Nat._ 163, 489–504 (2004) Article  Google


Scholar  * Lu, H., Rate, D. N., Song, J. T. & Greenberg, J. T. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the _Arabidopsis_ defense


response. _Plant Cell_ 15, 2408–2420 (2003) Article  CAS  Google Scholar  * Lu, H., Liu, Y. & Greenberg, J. T. Structure-function analysis of the plasma membrane-localized _Arabidopsis_


defense component ACD6. _Plant J._ 44, 798–809 (2005) Article  CAS  Google Scholar  * Balasubramanian, S. et al. QTL mapping in new _Arabidopsis thaliana_ advanced intercross-recombinant


inbred lines. _PLoS ONE_ 4, e4318 (2009) Article  ADS  Google Scholar  * Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial


microRNAs in _Arabidopsis_ . _Plant Cell_ 18, 1121–1133 (2006) Article  CAS  Google Scholar  * Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. & Greenberg, J. T. The


gain-of-function _Arabidopsis acd6_ mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. _Plant Cell_


11, 1695–1708 (1999) Article  CAS  Google Scholar  * Lorrain, S., Vailleau, F., Balague, C. & Roby, D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in


plants? _Trends Plant Sci._ 8, 263–271 (2003) Article  CAS  Google Scholar  * Greenberg, J. T. & Yao, N. The role and regulation of programmed cell death in plant-pathogen interactions.


_Cell. Microbiol._ 6, 201–211 (2004) Article  CAS  Google Scholar  * Yu, I. C., Parker, J. & Bent, A. F. Gene-for-gene disease resistance without the hypersensitive response in


_Arabidopsis dnd1_ mutant. _Proc. Natl Acad. Sci. USA_ 95, 7819–7824 (1998) Article  ADS  CAS  Google Scholar  * Gaffney, T. et al. Requirement of salicylic acid for the induction of


systemic acquired resistance. _Science_ 261, 754–756 (1993) Article  ADS  CAS  Google Scholar  * Lu, H. et al. Genetic analysis of _acd6–1_ reveals complex defense networks and leads to


identification of novel defense genes in _Arabidopsis_ . _Plant J._ 58, 401–412 (2009) Article  CAS  Google Scholar  * Abreu, M. E. & Munné-Bosch, S. Salicylic acid deficiency in _NahG_


transgenic lines and _sid2_ mutants increases seed yield in the annual plant _Arabidopsis thaliana_ . _J. Exp. Bot._ 60, 1261–1271 (2009) Article  CAS  Google Scholar  * Nordborg, M. et al.


The pattern of polymorphism in _Arabidopsis thaliana_ . _PLoS Biol._ 3, e196 (2005) Article  Google Scholar  * Atwell, S. et al. Genome-wide association study of 107 phenotypes in


_Arabidopsis thaliana_ inbred lines. _Nature_ 10.1038/nature08800 (24 March 2010) * Bomblies, K. et al. Local-scale patterns of genetic variability, outcrossing and spatial structure in


natural stands of _Arabidopsis thaliana_ . _PLoS Genet._ 6, e1000890 (2010) Article  Google Scholar  * Traw, M. B., Kniskern, J. M. & Bergelson, J. SAR increases fitness of _Arabidopsis


thaliana_ in the presence of natural bacterial pathogens. _Evolution_ 61, 2444–2449 (2007) Article  Google Scholar  * Van der Hoorn, R. A., De Wit, P. J. & Joosten, M. H. Balancing


selection favors guarding resistance proteins. _Trends Plant Sci._ 7, 67–71 (2002) Article  CAS  Google Scholar  * Alonso, J. M. et al. Genome-wide insertional mutagenesis of _Arabidopsis


thaliana_ . _Science_ 301, 653–657 (2003) Article  ADS  Google Scholar  * Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. _Bioinformatics_


19, 889–890 (2003) Article  CAS  Google Scholar  * Tuinstra, M., Ejeta, G. & Goldsbrough, P. Heterogenous inbred family (HIF) analysis: a method for developing near-isogenic lines that


differ at quantitative trait loci. _Theor. Appl. Genet._ 95, 1005–1011 (1997) Article  CAS  Google Scholar  * Warthmann, N., Fitz, J. & Weigel, D. MSQT for choosing SNP assays from


multiple DNA alignments. _Bioinformatics_ 23, 2784–2787 (2007) Article  CAS  Google Scholar  * Koch, E. & Slusarenko, A. _Arabidopsis_ is susceptible to infection by a downy mildew


fungus. _Plant Cell_ 2, 437–445 (1990) Article  CAS  Google Scholar  * Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs.


_Plant J._ 53, 674–690 (2008) Article  CAS  Google Scholar  * Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti


vector for _Agrobacterium_-mediated plant transformation. _Plant Mol. Biol._ 42, 819–832 (2000) Article  CAS  Google Scholar  * Weigel, D. & Glazebrook, J. _Arabidopsis: A Laboratory


Manual_ (Cold Spring Harbor Laboratory Press, 2002) Google Scholar  * Lempe, J. et al. Diversity of flowering responses in wild _Arabidopsis thaliana_ strains. _PLoS Genet._ 1, e6 (2005)


Article  Google Scholar  * Platt, A. et al. The scale of population structure in _Arabidopsis thaliana_ . _PLoS Genet._ 6, e1000843 (2010) Article  Google Scholar  * Larkin, M. A. et al.


Clustal W and Clustal X version 2.0. _Bioinformatics_ 23, 2947–2948 (2007) Article  CAS  Google Scholar  * Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein


sequence alignments into the corresponding codon alignments. _Nucleic Acids Res._ 34, W609–W612 (2006) Article  CAS  Google Scholar  * Edgar, R. C. MUSCLE: multiple sequence alignment with


high accuracy and high throughput. _Nucleic Acids Res._ 32, 1792–1797 (2004) Article  CAS  Google Scholar  * Thornton, K. _libsequence_: a C++ class library for evolutionary genetic


analysis. _Bioinformatics_ 19, 2325–2327 (2003) Article  CAS  Google Scholar  * Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. _Mol. Biol. Evol._ 24, 1586–1591 (2007) Article


  CAS  Google Scholar  * Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. _Bioinformatics_ 20, 289–290 (2004) Article  CAS  Google


Scholar  * Hirata, T. & Takamatsu, S. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi.


_Mycoscience_ 37, 283–288 (1996) Article  Google Scholar  * Adam, L. & Somerville, S. C. Genetic characterization of five powdery mildew disease resistance loci in _Arabidopsis thaliana_


. _Plant J._ 9, 341–356 (1996) Article  CAS  Google Scholar  * Vogel, J. & Somerville, S. Isolation and characterization of powdery mildew-resistant _Arabidopsis_ mutants. _Proc. Natl


Acad. Sci. USA_ 97, 1897–1902 (2000) Article  ADS  CAS  Google Scholar  * Holt, B. F. III et al. An evolutionarily conserved mediator of plant disease resistance gene function is required


for normal _Arabidopsis_ development. _Dev. Cell_ 2, 807–817 (2002) Article  Google Scholar  * Kaminaka, H. et al. bZIP10-LSD1 antagonism modulates basal defense and cell death in


_Arabidopsis_ following infection. _EMBO J._ 25, 4400–4411 (2006) Article  CAS  Google Scholar  * King, E. O., Ward, M. K. & Raney, D. E. Two simple media for the demonstration of


pyocyanin and fluorescin. _J. Lab. Clin. Med._ 44, 301–307 (1954) CAS  PubMed  Google Scholar  * Jakob, K. et al. _Pseudomonas viridiflava_ and _P. _ _syringae_–natural pathogens of


_Arabidopsis thaliana_ . _Mol. Plant Microbe Interact._ 15, 1195–1203 (2002) Article  CAS  Google Scholar  * Segarra, G., Jauregui, O., Casanova, E. & Trillas, I. Simultaneous


quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of _Cucumis sativus_ under biotic stress. _Phytochemistry_ 67, 395–401 (2006) Article  CAS  Google


Scholar  * Dewdney, J. et al. Three unique mutants of _Arabidopsis_ identify _eds_ loci required for limiting growth of a biotrophic fungal pathogen. _Plant J._ 24, 205–218 (2000) Article 


CAS  Google Scholar  * Konieczny, A. & Ausubel, F. M. A procedure for mapping _Arabidopsis_ mutations using co-dominant ecotype-specific PCR-based markers. _Plant J._ 4, 403–410 (1993)


Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank S.-W. Park and D. Klessig for the _nahG_ clone; J. Greenberg, the NSF-supported _Arabidopsis_ Biological Resource


Centre (ABRC) and the European _Arabidopsis_ Stock Centre (NASC) for seeds; and S. Atwell, K. Broman and Y.-L. Guo for advice. We are grateful to K. Bomblies and L. Yant for establishing the


Tübingen _A. thaliana_ collection. This work was supported by NIH NRSA fellowship F23-GM65032-1 (C.S.), an EMBO Long-Term Fellowship (S.B.), NIH grants GM62932 (J.C. and D.W.), GM057171


(J.L.D.), GM057994 (J.B.) and GM073822 (J.O.B.), NSF grants DEB-0519961 (J.B. and M.N.) and NSF MCB0603515 (J.B.), HFSPO grant RGP0057/2007-C (J.L.D. and D.W.), DFG grant LI 1317/2-1 (V.L.),


the Gatsby Foundation (V.L.), the Dropkin Foundation (J.B.), the Howard Hughes Medical Institute (J.C.), Marie Curie RTN SY-STEM (D.W.), ERA-PG (BMBF) grant ARABRAS (D.W.), FP6 IP


AGRON-OMICS (contract LSHG-CT-2006-037704, D.W.), a Gottfried Wilhelm Leibniz Award of the DFG (D.W.), and the Max Planck Society (D.W.). AUTHOR INFORMATION Author notes * Sureshkumar


Balasubramanian, Tina T. Hu & Sridevi Sureshkumar Present address: Present addresses: School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia (S.B.,


S.S.); Lewis-Sigler Institute, Princeton University, Princeton, New Jersey 08544, USA (T.T.H.)., * Marco Todesco and Sureshkumar Balasubramanian: These authors contributed equally to this


work. AUTHORS AND AFFILIATIONS * Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany Marco Todesco, Sureshkumar Balasubramanian, Sridevi


Sureshkumar, Christa Lanz, Roosa A. E. Laitinen & Detlef Weigel * Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA , Tina T. Hu,


 Yu Huang & Magnus Nordborg * Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15238, USA, M. Brian Traw * Department of Ecology and Evolution,


University of Chicago, Chicago, Illinois 60637, USA, Matthew Horton, Justin O. Borevitz & Joy Bergelson * Department of Biology, University of North Carolina, Chapel Hill, North Carolina


27599, USA, Petra Epple & Jeffery L. Dangl * The Sainsbury Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK , Christine Kuhns & Volker Lipka * Albrecht von Haller


Institute for Plant Sciences, Georg August University Göttingen, 37073 Göttingen, Germany Christine Kuhns & Volker Lipka * Plant Biology Laboratory, The Salk Institute for Biological


Studies, La Jolla, California 92037, USA , Christopher Schwartz & Joanne Chory * Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA, Christopher Schwartz


* Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA , Joanne Chory * Department of Microbiology and Immunology, Curriculum in


Genetics and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA, Jeffery L. Dangl * Gregor Mendel Institute, 1030 Vienna, Austria


Magnus Nordborg Authors * Marco Todesco View author publications You can also search for this author inPubMed Google Scholar * Sureshkumar Balasubramanian View author publications You can


also search for this author inPubMed Google Scholar * Tina T. Hu View author publications You can also search for this author inPubMed Google Scholar * M. Brian Traw View author publications


You can also search for this author inPubMed Google Scholar * Matthew Horton View author publications You can also search for this author inPubMed Google Scholar * Petra Epple View author


publications You can also search for this author inPubMed Google Scholar * Christine Kuhns View author publications You can also search for this author inPubMed Google Scholar * Sridevi


Sureshkumar View author publications You can also search for this author inPubMed Google Scholar * Christopher Schwartz View author publications You can also search for this author inPubMed 


Google Scholar * Christa Lanz View author publications You can also search for this author inPubMed Google Scholar * Roosa A. E. Laitinen View author publications You can also search for


this author inPubMed Google Scholar * Yu Huang View author publications You can also search for this author inPubMed Google Scholar * Joanne Chory View author publications You can also


search for this author inPubMed Google Scholar * Volker Lipka View author publications You can also search for this author inPubMed Google Scholar * Justin O. Borevitz View author


publications You can also search for this author inPubMed Google Scholar * Jeffery L. Dangl View author publications You can also search for this author inPubMed Google Scholar * Joy


Bergelson View author publications You can also search for this author inPubMed Google Scholar * Magnus Nordborg View author publications You can also search for this author inPubMed Google


Scholar * Detlef Weigel View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.T., S.B., J.C., V.L., J.O.B., J.L.D., J.B., M.N. and D.W.


conceived the study; M.T., S.B., M.B.T., M.H., P.E., C.K., S.S., C.S., C.L. and R.A.E.L. performed the experiments; M.T., S.B., T.T.H., M.B.T., Y.H., J.B., M.N. and D.W. analysed the data;


and M.T., S.B. and D.W. wrote the paper with contributions from all authors. CORRESPONDING AUTHOR Correspondence to Detlef Weigel. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary Methods, References, Supplementary Tables 1-9 and Supplementary


Figures 1-13 with legends. (PDF 1805 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE


FOR FIG. 5 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Todesco, M., Balasubramanian, S., Hu, T. _et al._ Natural allelic variation underlying a major


fitness trade-off in _Arabidopsis thaliana_. _Nature_ 465, 632–636 (2010). https://doi.org/10.1038/nature09083 Download citation * Received: 10 July 2009 * Accepted: 14 April 2010 * Issue


Date: 03 June 2010 * DOI: https://doi.org/10.1038/nature09083 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative