A mechanosensitive transcriptional mechanism that controls angiogenesis

feature-image

Play all audios:

Loading...

ABSTRACT Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which


mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1),


controls capillary network formation _in vitro_ in human microvascular endothelial cells and retinal angiogenesis _in vivo_ by modulating the balance of activities between two antagonistic


transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor _VEGFR2_ (also known as _KDR_). Moreover, this new angiogenesis signalling


pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that


controls tissue morphogenesis, and that responds to both mechanical and chemical cues. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE TRANSCRIPTION FACTOR COMPLEX LMO2/TAL1 REGULATES BRANCHING AND


ENDOTHELIAL CELL MIGRATION IN SPROUTING ANGIOGENESIS Article Open access 04 May 2022 ENDOTHELIAL TIP-CELL POSITION, FILOPODIA FORMATION AND BIOMECHANICS REQUIRE BMPR2 EXPRESSION AND


SIGNALING Article Open access 08 January 2025 HYDROSTATIC PRESSURE DRIVES SPROUTING ANGIOGENESIS VIA ADHERENS JUNCTION REMODELLING AND YAP SIGNALLING Article Open access 03 August 2024


REFERENCES * Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. _Nature Med._ 9, 669–676 (2003) Article  CAS  Google Scholar  * Ferrara, N., Mass, R. D.,


Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. _Annu. Rev. Med._ 58, 491–504 (2007) Article  CAS  Google Scholar  * Ingber, D. E. &


Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis _in vitro_: role of extracellular matrix. _J. Cell Biol._


109, 317–330 (1989) Article  CAS  Google Scholar  * Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. _Science_ 276,


1425–1428 (1997) Article  CAS  Google Scholar  * Dike, L. E. et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned


substrates. _In Vitro Cell. Dev. Biol. Anim._ 35, 441–448 (1999) Article  CAS  Google Scholar  * Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape


and orienting cell tractional forces. _FASEB J._ 16, 1195–1204 (2002) Article  CAS  Google Scholar  * Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to


mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. _J. Cell Sci._ 119, 508–518 (2006) Article  CAS  Google Scholar  * Kumar, S. et al.


Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. _Biophys. J._ 90, 3762–3773 (2006) Article


  CAS  Google Scholar  * Moore, K. A. et al. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. _Dev. Dyn._


232, 268–281 (2005) Article  CAS  Google Scholar  * Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. _Nature Cell Biol._ 1, E131–E138 (1999)


Article  CAS  Google Scholar  * Folkman, J. & Moscona, A. Role of cell shape in growth control. _Nature_ 273, 345–349 (1978) Article  CAS  Google Scholar  * Folkman, J. & Kalluri, R.


Cancer without disease. _Nature_ 427, 787 (2004) Article  CAS  Google Scholar  * Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. _Sci. STKE_ 2001, re21 (2001) CAS


  Google Scholar  * Wong, C. G., Rich, K. A., Liaw, L. H., Hsu, H. T. & Berns, M. W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit.


_Curr. Eye Res._ 22, 140–147 (2001) Article  CAS  Google Scholar  * Mammoto, A., Huang, S., Moore, K., Oh, P. & Ingber, D. E. Role of RhoA, mDia, and ROCK in cell shape-dependent control


of the Skp2-p27kip1 pathway and the G1/S transition. _J. Biol. Chem._ 279, 26323–26330 (2004) Article  CAS  Google Scholar  * Mammoto, A., Huang, S. & Ingber, D. E. Filamin links cell


shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. _J. Cell Sci._ 120, 456–467 (2007) Article  CAS  Google Scholar  * Jiang, W. et


al. An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression. _Mol. Cell_ 17, 23–35 (2005) Article  CAS  Google Scholar  * Jackson,


T. A., Taylor, H. E., Sharma, D., Desiderio, S. & Danoff, S. K. Vascular endothelial growth factor receptor-2: counter-regulation by the transcription factors, TFII-I and TFII-IRD1. _J.


Biol. Chem._ 280, 29856–29863 (2005) Article  CAS  Google Scholar  * Roy, A. L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. _Gene_ 274, 1–13 (2001)


Article  CAS  Google Scholar  * Francke, U. Williams–Beuren syndrome: genes and mechanisms. _Hum. Mol. Genet._ 8, 1947–1954 (1999) Article  CAS  Google Scholar  * Roy, A. L. Signal-induced


functions of the transcription factor TFII-I. _Biochim. Biophys. Acta_ 1769, 613–621 (2007) Article  CAS  Google Scholar  * Patterson, C. et al. Cloning and functional analysis of the


promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. _J. Biol. Chem._ 270, 23111–23118 (1995) Article  CAS  Google Scholar  * Minami, T., Rosenberg, R. D. & Aird,


W. C. Transforming growth factor-β1-mediated inhibition of the _flk-1/KDR_ gene is mediated by a 5′-untranslated region palindromic GATA site. _J. Biol. Chem._ 276, 5395–5402 (2001) Article


  CAS  Google Scholar  * Minami, T. et al. Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits _flk-1/KDR_-mediated vascular endothelial growth


factor signaling. _J. Biol. Chem._ 279, 20626–20635 (2004) Article  CAS  Google Scholar  * Cantor, A. B. & Orkin, S. H. Hematopoietic development: a balancing act. _Curr. Opin. Genet.


Dev._ 11, 513–519 (2001) Article  CAS  Google Scholar  * Grogan, J. L. & Locksley, R. M. T helper cell differentiation: on again, off again. _Curr. Opin. Immunol._ 14, 366–372 (2002)


Article  CAS  Google Scholar  * Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. _Proc. Natl Acad. Sci. USA_


101, 1993–1998 (2004) Article  CAS  Google Scholar  * Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the


mammary gland. _Cell_ 127, 1041–1055 (2006) Article  CAS  Google Scholar  * Su, Z. J. et al. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. _Proc. Natl


Acad. Sci. USA_ 101, 12212–12217 (2004) Article  CAS  Google Scholar  * Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent


mechanism. _Curr. Biol._ 10, 719–722 (2000) Article  CAS  Google Scholar  * Robinson, C. J. & Stringer, S. E. The splice variants of vascular endothelial growth factor (VEGF) and their


receptors. _J. Cell Sci._ 114, 853–865 (2001) CAS  Google Scholar  * Sheibani, N. & Frazier, W. A. Down-regulation of platelet endothelial cell adhesion molecule-1 results in


thrombospondin-1 expression and concerted regulation of endothelial cell phenotype. _Mol. Biol. Cell_ 9, 701–713 (1998) Article  CAS  Google Scholar  * Numaguchi, Y. et al.


Caldesmon-dependent switching between capillary endothelial cell growth and apoptosis through modulation of cell shape and contractility. _Angiogenesis_ 6, 55–64 (2003) Article  CAS  Google


Scholar  * Polte, T. R., Eichler, G. S., Wang, N. & Ingber, D. E. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape


and cytoskeletal prestress. _Am. J. Physiol. Cell Physiol._ 286, C518–C528 (2004) Article  CAS  Google Scholar  * Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. & Smith, L. E.


Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. _Proc. Natl Acad. Sci. USA_ 92, 905–909 (1995) Article  CAS 


Google Scholar  * Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. _J. Clin. Invest._ 109, 327–336 (2002) Article  CAS  Google


Scholar  * Mammoto, T. et al. Angiopoietin-1 requires p190RhoGAP to protect against vascular leakage _in vivo_ . _J. Biol. Chem._ 282, 23910–23918 (2007) Article  CAS  Google Scholar  *


Singh, H., Medina, K. L. & Pongubala, J. M. Contingent gene regulatory networks and B cell fate specification. _Proc. Natl Acad. Sci. USA_ 102, 4949–4953 (2005) Article  CAS  Google


Scholar  * Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. _Dev. Biol._ 294, 525–540 (2006)


Article  CAS  Google Scholar  * Gottgens, B. et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and


GATA factors. _EMBO J._ 21, 3039–3050 (2002) Article  CAS  Google Scholar  * Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage


specification. _Cell_ 126, 677–689 (2006) Article  CAS  Google Scholar  * Clark, E. R. & Clark, E. L. Microscopic observations on the growth of blood capillaries in the living mammal.


_Am. J. Anat._ 64, 251–301 (1939) Article  Google Scholar  * Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. _Nature_ 436, 193–200 (2005) Article


  CAS  Google Scholar  * Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. _Proc. Natl Acad. Sci. USA_ 94, 13661–13665 (1997) Article 


CAS  Google Scholar  * Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. _Am. J. Physiol. Cell Physiol._ 282, C606–C616 (2002)


Article  CAS  Google Scholar  * Yung, C. W. et al. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. _J. Biomed. Mater. Res. A_ 83, 1039–1046 (2007) Article  CAS  Google


Scholar  * Connor, K. M. et al. Increased dietary intake of Ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. _Nature Med._ 13, 868–873 (2007) Article  CAS  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank T. Polte, E. Pravda, M. de Bruijn and K. Johnson for their technical suggestions and assistance, T. Nakano and H. Sabe for providing


plasmids, the National Institutes of Health (NIH) for providing VEGF, and D. Weitz for providing assistance with rheometry measurements. This work was supported by funds from the NIH (to


D.E.I., L.E.H.S. and K.M.C.), V. Kann Rasmussen Foundation (to L.E.H.S.), Children’s Hospital Mental Retardation and Developmental Disabilities Research Center (to L.E.H.S.), a Research to


Prevent Blindness Lew Wasserman Merit Award (to L.E.H.S.), American Heart Association (to A.M.), and a Children’s Hospital House Officer Development Award (to A.M.); D.E.I. is a recipient of


a DoD Breast Cancer Innovator Award. AUTHOR CONTRIBUTIONS A.M. conceived the experiments, performed experiments, designed research and analysed data with assistance from K.M.C., T.M.,


C.W.Y., D.H., C.M.A., G.M., L.E.H.S. and D.E.I. A.M. wrote the manuscript with D.E.I., with input from L.E.H.S. AUTHOR INFORMATION Author notes * Gustavo Mostoslavsky Present address:


Present address: Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA., AUTHORS AND AFFILIATIONS * Departments of Pathology & Surgery,, Vascular


Biology Program, Akiko Mammoto, Tadanori Mammoto, Chong Wing Yung, Dongeun Huh & Donald E. Ingber * Department of Ophthalmology, Children’s Hospital and Harvard Medical School, Boston,


Massachusetts 02115, USA, Kip M. Connor, Christopher M. Aderman & Lois E. H. Smith * Department of Genetics, Harvard Medical School, Harvard Institute of Medicine, Boston, Massachusetts


02215, USA, Gustavo Mostoslavsky * Wyss Institute for Biologically Inspired Engineering and Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA , Donald


E. Ingber Authors * Akiko Mammoto View author publications You can also search for this author inPubMed Google Scholar * Kip M. Connor View author publications You can also search for this


author inPubMed Google Scholar * Tadanori Mammoto View author publications You can also search for this author inPubMed Google Scholar * Chong Wing Yung View author publications You can also


search for this author inPubMed Google Scholar * Dongeun Huh View author publications You can also search for this author inPubMed Google Scholar * Christopher M. Aderman View author


publications You can also search for this author inPubMed Google Scholar * Gustavo Mostoslavsky View author publications You can also search for this author inPubMed Google Scholar * Lois E.


H. Smith View author publications You can also search for this author inPubMed Google Scholar * Donald E. Ingber View author publications You can also search for this author inPubMed Google


Scholar CORRESPONDING AUTHOR Correspondence to Donald E. Ingber. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary Figures S1-S13 with Legends and


Supplementary Tables S1 and S2 (PDF 6181 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT


SLIDE FOR FIG. 5 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mammoto, A., Connor, K., Mammoto, T. _et al._ A mechanosensitive transcriptional


mechanism that controls angiogenesis. _Nature_ 457, 1103–1108 (2009). https://doi.org/10.1038/nature07765 Download citation * Received: 02 October 2008 * Accepted: 31 December 2008 * Issue


Date: 26 February 2009 * DOI: https://doi.org/10.1038/nature07765 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative