Crystal structure of a catalytic intermediate of the maltose transporter

feature-image

Play all audios:

Loading...

ABSTRACT The maltose uptake system of _Escherichia coli_ is a well-characterized member of the ATP-binding cassette transporter superfamily. Here we present the 2.8-Å crystal structure of


the intact maltose transporter in complex with the maltose-binding protein, maltose and ATP. This structure, stabilized by a mutation that prevents ATP hydrolysis, captures the ATP-binding


cassette dimer in a closed, ATP-bound conformation. Maltose is occluded within a solvent-filled cavity at the interface of the two transmembrane subunits, about halfway into the lipid


bilayer. The binding protein docks onto the entrance of the cavity in an open conformation and serves as a cap to ensure unidirectional translocation of the sugar molecule. These results


provide direct evidence for a concerted mechanism of transport in which solute is transferred from the binding protein to the transmembrane subunits when the cassette dimer closes to


hydrolyse ATP. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ATP HYDROLYSIS AND NUCLEOTIDE EXIT ENHANCE MALTOSE TRANSLOCATION IN THE MALFGK2E IMPORTER Article Open access 19 May 2021


STRUCTURES OF HUMAN SGLT IN THE OCCLUDED STATE REVEAL CONFORMATIONAL CHANGES DURING SUGAR TRANSPORT Article Open access 22 May 2023 A ROTARY MECHANISM FOR ALLOSTERY IN BACTERIAL HYBRID MALIC


ENZYMES Article Open access 23 February 2021 REFERENCES * Higgins, C. F. ABC transporters: from microorganisms to man. _Annu. Rev. Cell Biol._ 8, 67–113 (1992) Article  CAS  Google Scholar


  * Boos, W. & Lucht, J. M. in _Escherichia coli and Salmonella: Cellular and Molecular Biology_ (eds Neidhardt, F. C. et al.) 1175–1209 (ASM Press, Washington DC, 1996) Google Scholar 


* Holland, I. B. & Blight, M. A. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. _J. Mol. Biol._


293, 381–399 (1999) Article  CAS  Google Scholar  * Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin,


kinases and other ATP-requiring enzymes and a common nucleotide binding fold. _EMBO J._ 1, 945–951 (1982) Article  CAS  Google Scholar  * Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P.


& Rees, D. C. An inward-facing conformation of a putative metal-chelate-type ABC transporter. _Science_ 315, 373–377 (2007) Article  ADS  CAS  Google Scholar  * Locher, K. P., Lee, A. T.


& Rees, D. C. The _E. _ _coli_ BtuCD structure: a framework for ABC transporter architecture and mechanism. _Science_ 296, 1091–1098 (2002) Article  ADS  CAS  Google Scholar  *


Hollenstein, K., Frei, D. C. & Locher, K. P. Structure of an ABC transporter in complex with its binding protein. _Nature_ 446, 213–216 (2007) Article  ADS  CAS  Google Scholar  *


Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. _Nature_ 443, 180–185 (2006) Article  ADS  CAS  Google Scholar  * Ferenci, T. The recognition of


maltodextrins by _Escherichia coli._ . _Eur. J. Biochem._ 108, 613–636 (1980) Article  Google Scholar  * Raibaud, O., Roa, M., Braun-Breton, C. & Schwartz, M. Structure of the _malB_


region in _Escherichia coli_ K-12. I. Genetic map of the _malK-lamB_ operon. _Mol. Gen. Genet._ 174, 241–248 (1979) Article  CAS  Google Scholar  * Silhavy, T. J. et al. Structure of the


_malB_ region in _Escherichia coli_ K12. II. Genetic map of the malE,F,G operon. _Mol. Gen. Genet._ 174, 249–259 (1979) Article  CAS  Google Scholar  * Davidson, A. L. & Nikaido, H.


Purification and characterization of the membrane-associated components of the maltose transport system from _Escherichia coli_ . _J. Biol. Chem._ 266, 8946–8951 (1991) CAS  PubMed  Google


Scholar  * Davidson, A. L. & Nikaido, H. Overproduction, solubilization, and reconstitution of the maltose transport system from _Escherichia coli_ . _J. Biol. Chem._ 265, 4254–4260


(1990) CAS  PubMed  Google Scholar  * Landmesser, H. et al. Large-scale purification, dissociation and functional reassembly of the maltose ATP-binding cassette transporter (MalFGK(2)) of


_Salmonella typhimurium_ . _Biochim. Biophys. Acta_ 1565, 64–72 (2002) Article  CAS  Google Scholar  * Davidson, A. L., Shuman, H. A. & Nikaido, H. Mechanism of maltose transport in


_Escherichia coli_: Transmembrane signalling by periplasmic binding proteins. _Proc. Natl Acad. Sci. USA_ 89, 2360–2364 (1992) Article  ADS  CAS  Google Scholar  * Sharff, A. J., Rodseth, L.


E., Spurlino, J. E. & Quiocho, F. A. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in


active transport and chemotaxis. _Biochemistry_ 31, 10657–10663 (1992) Article  CAS  Google Scholar  * Quiocho, F. A., Spurlino, J. C. & Rodseth, L. E. Extensive features of tight


oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. _Structure_ 5, 997–1015 (1997) Article  CAS  Google Scholar  * Duan, X.


& Quiocho, F. A. Structural evidence for the dominant role of nonpolar interactions in the binding of a transport/chemonsensory receptor to its highly polar ligands. _Biochemistry_ 41,


706–712 (2002) Article  CAS  Google Scholar  * Chen, J., Sharma, S., Quiocho, F. A. & Davidson, A. L. Trapping the transition state of an ATP-binding-cassette transporter: Evidence for a


concerted mechanism of maltose transport. _Proc. Natl Acad. Sci. USA_ 98, 1525–1530 (2001) Article  ADS  CAS  Google Scholar  * Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F.


A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. _Mol. Cell_ 12, 651–661 (2003) Article  CAS  Google Scholar  * Lu, G., Westbrooks, J. M., Davidson, A.


L. & Chen, J. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. _Proc. Natl Acad. Sci. USA_ 102, 17969–17974 (2005) Article  ADS 


CAS  Google Scholar  * Orelle, C., Dalmas, O., Gros, P., Di Pietro, A. & Jault, J. M. The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP


hydrolysis in the ATP-binding cassette transporter BmrA. _J. Biol. Chem._ 278, 47002–47008 (2003) Article  CAS  Google Scholar  * Moody, J. E., Millen, L., Binns, D., Hunt, J. F. &


Thomas, P. J. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. _J. Biol. Chem._ 277, 21111–21114


(2002) Article  CAS  Google Scholar  * Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. _Mol. Cell_ 10, 139–149


(2002) Article  CAS  Google Scholar  * Rossmann, M. G. The molecular replacement method. _Acta Crystallogr. A_ 46, 73–82 (1990) Article  Google Scholar  * Covitz, K.-M. Y., Panagiotidis, C.


H., Reyes, M., Treptow, N. A. & Shuman, H. A. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. _EMBO J._ 13, 1752–1759 (1994)


Article  CAS  Google Scholar  * Dassa, E. & Muir, S. Membrane topology of MalG, an inner membrane protein from the maltose transport system of _Escherichia coli_ . _Mol. Microbiol._ 7,


29–38 (1993) Article  CAS  Google Scholar  * Froshauer, S., Green, G. N., Boyd, D., McGovern, K. & Beckwith, J. Genetic analysis of the membrane insertion and topology of MalF, a


cytoplasmic membrane protein of _Escherichia coli_ . _J. Mol. Biol._ 200, 501–511 (1988) Article  CAS  Google Scholar  * Hvorup, R. N. et al. Asymmetry in the structure of the ABC


transporter binding protein complex BtuCD-BtuF. _Science_ 317, 1387–1390 (2007) Article  ADS  CAS  Google Scholar  * Dassa, E. & Hofnung, M. Sequence of gene _malG_ in _E. _ _coli_ K12:


homologies between integral membrane components from binding protein-dependent transport systems. _EMBO J._ 4, 2287–2293 (1985) Article  CAS  Google Scholar  * Saurin, W., Koster, W. &


Dassa, E. Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. _Mol. Microbiol._ 12,


993–1004 (1994) Article  CAS  Google Scholar  * Busch, W. & Saier, M. H. Jr. The transporter classification (TC) system, 2002. _Crit. Rev. Biochem. Mol. Biol._ 37, 287–337 (2002) Article


  CAS  Google Scholar  * Mourez, M., Hofnung, M. & Dassa, E. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases


defines an important site of interaction with the ATPase subunits. _EMBO J._ 16, 3066–3077 (1997) Article  CAS  Google Scholar  * Ehrle, R., Pick, C., Ulrich, R., Hofmann, E. & Ehrmann,


M. Characterization of transmembrane domains 6, 7, and 8 of MalF by mutational analysis. _J. Bacteriol._ 178, 2255–2262 (1996) Article  CAS  Google Scholar  * Steinke, A., Grau, S.,


Davidson, A., Hofmann, E. & Ehrmann, M. Characterization of transmembrane segments 3, 4, and 5 of MalF by mutational analysis. _J. Bacteriol._ 183, 375–381 (2001) Article  CAS  Google


Scholar  * Quiocho, F. A. Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. _Annu. Rev. Biochem._ 55, 287–315 (1986) Article  CAS  Google Scholar  * Shuman,


H. A. Active transport of maltose in _Escherichia coli_ K-12: role of the periplasmic maltose binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. _J.


Biol. Chem._ 257, 5455–5461 (1982) CAS  PubMed  Google Scholar  * Schirmer, T., Keller, T. A., Wang, Y. F. & Rosenbusch, J. P. Structural basis for sugar translocation through maltoporin


channels at 3.1 Å resolution. _Science_ 267, 512–514 (1995) Article  ADS  CAS  Google Scholar  * Quiocho, F. A. & Ledvina, P. S. Atomic structure and specificity of bacterial


periplasmic receptors for active transport and chemotaxis: variation of common themes. _Mol. Microbiol._ 20, 17–25 (1996) Article  CAS  Google Scholar  * Miller, D. M., Olson, J. S.,


Pflugrath, J. W. & Quiocho, F. A. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. _J. Biol. Chem._ 258, 13665–13672 (1983) CAS  PubMed 


Google Scholar  * Nelson, B. D. & Traxler, B. Exploring the role of integral membrane proteins in ATP-binding cassette transporters: analysis of a collection of MalG insertion mutants.


_J. Bacteriol._ 180, 2507–2514 (1998) CAS  PubMed  PubMed Central  Google Scholar  * Austermuhle, M. I., Hall, J. A., Klug, C. S. & Davidson, A. L. Maltose-binding protein is open in the


catalytic transition state for ATP hydrolysis during maltose transport. _J. Biol. Chem._ 279, 28243–28250 (2004) Article  CAS  Google Scholar  * Fetsch, E. E. & Davidson, A. L.


Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. _Proc. Natl Acad. Sci. USA_ 99, 9685–9690 (2002) Article  ADS  CAS  Google Scholar  *


Sharma, S. & Davidson, A. L. Vanadate-induced trapping of nucleotide by the purified maltose transport complex requires ATP hydrolysis. _J. Bacteriol._ 182, 6570–6576 (2000) Article  CAS


  Google Scholar  * Urbatsch, I. L., Sankaran, B., Bhagat, S. & Senior, A. E. Both P-glycoprotein nucleotide-binding sites are catalytically active. _J. Biol. Chem._ 270, 26956–26962


(1995) Article  CAS  Google Scholar  * Urbatsch, I. L., Sankaran, B., Weber, J. & Senior, A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single


catalytic site. _J. Biol. Chem._ 270, 19383–19390 (1995) Article  CAS  Google Scholar  * Jardetzky, O. Simple allosteric model for membrane pumps. _Nature_ 211, 969–970 (1966) Article  ADS 


CAS  Google Scholar  * Neuhard, J. & Nygaard, P. in _Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology_ (eds Ingraham, J. L. & Neidhardt, F. C.) 445–473


(ASM Press, Washington DC, 1987) Google Scholar  * Davidson, A. L., Laghaeian, S. S. & Mannering, D. E. The maltose transport system of _Escherichia coli_ displays positive cooperativity


in ATP hydrolysis. _J. Biol. Chem._ 271, 4858–4863 (1996) Article  CAS  Google Scholar  * Sun, H. & Nathans, J. Mechanistic studies of ABCR, the ABC transporter in photoreceptor outer


segments responsible for autosomal recessive Stargardt disease. _J. Bioenerg. Biomembr._ 33, 523–530 (2001) Article  CAS  Google Scholar  * Davidson, A. L. & Nikaido, H. Overproduction,


solubilization, and reconstitution of the maltose transport system from _Escherichia coli_ . _J. Biol. Chem._ 265, 4254–4260 (1990) CAS  PubMed  Google Scholar  * Chen, J., Lu, G., Lin, J.,


Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. _Mol. Cell_ 12, 651–661 (2003) Article  CAS  Google Scholar  * Dean,


D. A., Fikes, J. D., Gehring, K., Bassford, P. J. & Nikaido, H. Active transport of maltose in membrane vesicles obtained from _Escherichia coli_ cells producing tethered maltose-binding


protein. _J. Bacteriol._ 171, 503–510 (1989) Article  CAS  Google Scholar  * Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. _Macro


Crystallogr. A_ 276, 307–326 (1997) Article  CAS  Google Scholar  * Project, C. C. The CCP4 suite: programs for protein crystallography. _Acta Crystallogr. D_ 50, 760–763 (1994) Article 


Google Scholar  * Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these


models. _Acta Crystallogr. A_ 47, 110–119 (1991) Article  Google Scholar  * Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. _Acta Crystallogr. D_ 60, 2126–2132


(2004) Article  Google Scholar  * Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. _Acta Crystallogr. D_ 54, 905–921


(1998) Article  CAS  Google Scholar  * Painter, J. & Merritt, E. A. TLSMD web server for the generation of multi-group TLS models. _J. Appl. Cryst._ 39, 109–111 (2006) Article  CAS 


Google Scholar  * Howlin, B., Butler, S. A., Moss, D. S., Harris, G. W. & Driessen, H. P. C. TLSANL—TLS parameter-analysis program for segmented anisotropic refinement of macromolecular


structures. _J. Appl. Cryst._ 26, 622–624 (1993) Article  Google Scholar  * Ehrmann, M. & Beckwith, J. Proper insertion of a complex membrane protein in the absence of its amino-terminal


export signal. _J. Biol. Chem._ 266, 16530–16533 (1991) CAS  PubMed  Google Scholar  * DeLano, W.L. The PyMOL Molecular Graphics System (2002) on the World Wide Web 〈http://www.pymol.org〉 *


Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. _Acta Crystallogr. D_ 50, 178–185 (1994) Article  CAS  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank the beamline staff at the Advanced Photon Source beamline 23-ID for assistance with data collection, and R. MacKinnon, H. Shuman, D.


Yernool and C. Orelle for discussions. This work was supported by NIH grants (J.C., A.L.D. and F.A.Q.), the Welch Foundation (F.A.Q.), the Pew Scholar Program (J.C.) and a postdoctoral


fellowship from American Heart Association (M.L.O). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biological Sciences,, Michael L. Oldham, Dheeraj Khare & Jue Chen *


Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA, Amy L. Davidson * Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of


Medicine, Houston, Texas 77030, USA, Florante A. Quiocho Authors * Michael L. Oldham View author publications You can also search for this author inPubMed Google Scholar * Dheeraj Khare View


author publications You can also search for this author inPubMed Google Scholar * Florante A. Quiocho View author publications You can also search for this author inPubMed Google Scholar *


Amy L. Davidson View author publications You can also search for this author inPubMed Google Scholar * Jue Chen View author publications You can also search for this author inPubMed Google


Scholar CORRESPONDING AUTHOR Correspondence to Jue Chen. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION The file contains Supplementary Figures 1-5 and Legends, Supplementary Tables 1-2


and additional references. (PDF 762 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Oldham, M., Khare, D., Quiocho, F. _et al._ Crystal structure of


a catalytic intermediate of the maltose transporter. _Nature_ 450, 515–521 (2007). https://doi.org/10.1038/nature06264 Download citation * Received: 13 August 2007 * Accepted: 17 September


2007 * Issue Date: 22 November 2007 * DOI: https://doi.org/10.1038/nature06264 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative