Experimental models of arteriogenesis: differences and implications

feature-image

Play all audios:

Loading...

ABSTRACT Cardiovascular and cerebrovascular disease represent the two most common causes of mortality and morbidity in western countries, and the treatment for these is generally by the


mechanical restoration of blood flow in the affected tissues. Stimulation of collateral artery growth (arteriogenesis) provides a potential alternative option for the treatment of patients


suffering from occlusive artery disease. Therefore, researchers have established several angiogenesis and arteriogenesis animal models to investigate basic mechanisms and pharmacological


modulation of collateral artery growth. The authors highlight the most important aspects of vascular growth, discuss different methods and techniques for examining the process, and review


the advantages and disadvantages associated with the animal models available for studying this phenomenon. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact


customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CORONARY VESSEL FORMATION IN DEVELOPMENT AND DISEASE: MECHANISMS AND INSIGHTS FOR THERAPY Article 25 June 2020 MODELING EARLY STAGE


ATHEROSCLEROSIS IN A PRIMARY HUMAN VASCULAR MICROPHYSIOLOGICAL SYSTEM Article Open access 27 October 2020 EXPERIMENTAL MURINE ARTERIOVENOUS FISTULA MODEL TO STUDY RESTENOSIS AFTER


TRANSLUMINAL ANGIOPLASTY Article 20 October 2020 REFERENCES * Risau, W. Mechanisms of angiogenesis. _Nature_ 386(6626), 671–674 (1997). Article  Google Scholar  * Risau, W. & Flamme, I.


Vasculogenesis. _Annu. Rev. Cell Dev. Biol._ 11, 73–91 (1995). Article  CAS  Google Scholar  * Flamme, I., Frolich, T. & Risau, W. Molecular mechanisms of vasculogenesis and embryonic


angiogenesis. _J. Cell. Physiol._ 173(2), 206–210 (1997). Article  Google Scholar  * Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. _Science_


275(5302), 964–967 (1997). Article  CAS  Google Scholar  * Urbich, C. & Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. _Circ. Res._ 95(4),


343–353 (2004). Article  Google Scholar  * Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. _Nat. Med._ 6(4), 389–395 (2000). Article  Google Scholar  * Folkman, J. Tumor


angiogenesis: therapeutic implications. _N. Engl. J. Med._ 285(21), 1182–1186 (1971). Google Scholar  * Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. _Ann. Surg._


175(3), 409–416 (1972). Article  Google Scholar  * Folkman, J. Tumor angiogenesis: a possible control point in tumor growth. _Ann. Intern. Med._ 82(1), 96–100. (1975). Article  Google


Scholar  * Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. _Nature_ 394(6692), 485–490 (1998). Article  Google Scholar  *


Henry, T. et al. Double blind, placebo controlled trial of recombinant human vascular endothelial growth factor: the VIVA trial. _J. Am. Coll. Cardiol._ 33(2: Supp A), 384 (1999). Google


Scholar  * Lower, R. _Tractus de Corde_ (Elsevier, Amsterdam, 1669). Google Scholar  * Longland, C.J. The collateral circulation of the limb. _Ann. Roy. Coll. Surg. Engl._ 13(3), 161–164


(1953). Google Scholar  * Ito, W.D. et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. _Am. J. Physiol._ 273 (3 Pt 2), H1255–H1265


(1997). CAS  PubMed  Google Scholar  * Deindl, E. et al. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. _Circ. Res._ 89(9),


779–786 (2001). Article  Google Scholar  * Hoefer, I.E. et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. _Circ. Res._ 94(9), 1179–1185 (2004). Article  Google Scholar  *


Scholz, D. et al. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture. _Cell Tissue Res._ 284(3), 415–423 (1996). Article 


Google Scholar  * Scholz, D. et al. Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth (arteriogenesis). _Virchows Arch._ 436(3), 257–270 (2000). Article 


Google Scholar  * van Royen, N. et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. _Circulation_ 109(13),


1647–1652 (2004). Article  Google Scholar  * Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. _J. Clin. Invest._ 101(1), 40–50 (1998).


Article  Google Scholar  * Ley, K., Allietta, M., Bullard, D.C. & Morgan, S. Importance of E-selectin for firm leukocyte adhesion in vivo. _Circ. Res._ 83(3), 287–294 (1998). Article 


Google Scholar  * Kukreti, S., Konstantopoulos, K., Smith, C.W. & McIntire, L.V. Molecular mechanisms of monocyte adhesion to interleukin-1β-stimulated endothelial cells under


physiologic flow conditions. _Blood_ 89(11), 4104–4111 (1997). Google Scholar  * Languino, L.R. et al. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial


migration by intercellular adhesion molecule 1-fibrinogen recognition. _Proc. Natl. Acad. Sci. USA_ 92(5), 1505–1509 (1995). Article  Google Scholar  * Morigi, M. et al. Fluid shear stress


modulates surface expression of adhesion molecules by endothelial cells. _Blood_ 85(7), 1696–1703 (1995). Google Scholar  * Cai, W. et al. Altered balance between extracellular proteolysis


and antiproteolysis is associated with adaptive coronary arteriogenesis. _J. Mol. Cell. Cardiol._ 32(6), 997–1011 (2000). Article  Google Scholar  * Cai, W.J. et al. Remodeling of the


adventitia during coronary arteriogenesis. _Am. J. Physiol. Heart Circ. Physiol._ 284(1), H31–H40 (2003). Article  Google Scholar  * Scholz, D. et al. Early events in adaptive


arteriogenesis. _(Abstr.) J. Mol. Cell. Cardiol._ 30(Suppl), A127 (1998). Google Scholar  * Hoefer, I., van Royen, N., Buschmann, I., Piek, J. & Schaper, W. Time course of arteriogenesis


following femoral artery occlusion in the rabbit. _Cardiovasc. Res._ 49(3), 609–617 (2001). Article  Google Scholar  * Pipp, F. et al. Elevated fluid shear stress enhances postocclusive


collateral artery growth and gene expression in the pig hind limb. _Arterioscler. Thromb. Vasc. Biol._ 24(9), 1664–1668 (2004). Article  Google Scholar  * Unger, E.F. Experimental evaluation


of coronary collateral development. _Cardiovasc. Res._ 49(3), 497–506 (2001). Article  Google Scholar  * Rentrop, K.P., Feit, F., Sherman, W. & Thornton, J.C. Serial angiographic


assessment of coronary artery obstruction and collateral flow in acute myocardial infarction. Report from the second Mount Sinai-New York University Reperfusion Trial. _Circulation_ 80(5),


1166–1175 (1989). Article  Google Scholar  * Fuchs, S., Shou, M., Baffour, R., Epstein, S.E. & Kornowski, R. Lack of correlation between angiographic grading of collateral and myocardial


perfusion and function: implications for the assessment of angiogenic response. _Coron. Artery Dis._ 12(3), 173–178 (2001). Article  Google Scholar  * Heil, M. et al. Blood monocyte


concentration is critical for the enhancement of collateral artery growth. _Am. J. Physiol. Heart Circ. Physiol._ 28(6), H2411–H2419 (2002). Article  Google Scholar  * Rivard, A. et al.


Age-dependent impairment of angiogenesis. _Circulation_ 99(1), 111–120 (1999). Article  Google Scholar  * Silvestre, J.S. et al. Antiangiogenic effect of angiotensin II type 2 receptor in


ischemia-induced angiogenesis in mice hindlimb. _Circ. Res._ 90(10), 1072–1079 (2002). Article  Google Scholar  * Schirmer, S.H. et al. Differential effects of MCP-1 and leptin on collateral


flow and arteriogenesis. _Cardiovasc. Res._ 64(2), 356–364 (2004). Article  Google Scholar  * Wright, C.E., Angus, J.A. & Korner, P.I. Vascular amplifier properties in renovascular


hypertension in conscious rabbits. _Hypertension_ 9(2), 122–131 (1987). Article  Google Scholar  * Buschmann, I.R. et al. Invasive and non-invasive evaluation of spontaneous arteriogenesis


in a novel porcine model for peripheral arterial obstructive disease. _Atherosclerosis_ 167(1), 33–43 (2003). Article  Google Scholar  * Voskuil, M. et al. Modulation of collateral artery


growth in a porcine hindlimb ligation model using MCP-1. _Am. J. Physiol. Heart Circ. Physiol._ 284(4), H1422–H1428 (2003). Article  Google Scholar  * Chien, G.L., Anselone, C.G., Davis,


R.F. & Van Winkle, D.M. Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow. _Cardiovasc. Res._ 30(3), 405–412 (1995). Article  Google Scholar  * Van


Oosterhout, M.F., Prinzen, F.W., Sakurada, S., Glenny, R.W. & Hales, J.R.S. Fluorescent microspheres are superior to radioactive microspheres in chronic blood flow measurements. _Am. J.


Physiol._ 275 (1 Pt 2), H110–H115 (1998). CAS  PubMed  Google Scholar  * Buckberg, G. Studies of regional coronary flow using radioactive microspheres. _Ann. Thorac. Surg._ 20(1), 46–51


(1975). Article  Google Scholar  * Bassingthwaighte, J.B. et al. Validity of microsphere depositions for regional myocardial flows. _Am. J. Physiol._ 253 (1 Pt 2), H184–H193 (1987). CAS 


PubMed  PubMed Central  Google Scholar  * Glenny, R.W. Manual for Using Fluorescent Microspheres to Measure Regional Organ Perfusion (Fluorescent Microsphere Resource Center, Seattle, WA,


1996). * Yang, H.T., Ogilvie, R.W. & Terjung, R.L. Heparin increases exercise-induced collateral blood flow in rats with femoral artery ligation. _Circ. Res._ 76(3), 448–456 (1995).


Article  Google Scholar  * Yang, H.T., Laughlin, M.H. & Terjung, R.L. Prior exercise training increases collateral-dependent blood flow in rats after acute femoral artery occlusion. _Am.


J. Physiol. Heart Circ. Physiol._ 279(4), H1890–H1897 (2000). Article  Google Scholar  * Prior, B.M., Lloyd, P.G., Yang, H.T. & Terjung, R.L. Exercise-induced vascular remodeling.


_Exerc. Sport Sci. Rev._ 31(1), 26–33 (2003). Article  Google Scholar  * Scholz, D. et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. _J.


Mol. Cell. Cardiol._ 34(7), 775–787 (2002). Article  Google Scholar  * Heil, M. et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice


lacking CC-chemokine receptor-2. _Circ. Res._ 94(5), 671–677 (2004). Article  Google Scholar  * Horvath, K.A. et al. Myocardial functional recovery after fibroblast growth factor 2 gene


therapy as assessed by echocardiography and magnetic resonance imaging. _Ann. Thorac. Surg._ 74(2), 481–486; discussion 487 (2002). Article  Google Scholar  * Wagner, S., Helisch, A.,


Bachmann, G. & Schaper, W. Time-of-flight quantitative measurements of blood flow in mouse hindlimbs. _J. Magn. Reson. Imaging_ 19(4), 468–474 (2004). Article  Google Scholar  * Wagner,


S., Helisch, A., Ziegelhoeffer, T., Bachmann, G. & Schaper, W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. _NMR Biomed._ 17(1), 21–27


(2004). Article  Google Scholar  * Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. _Circ. Res._ 92(4), 378–385 (2003).


Article  Google Scholar  * van Royen, N. et al. Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic


monocytic CD11b expression, neointimal formation, and plaque progression. _Circ. Res._ 92(2), 218–225 (2003). Article  Google Scholar  * Scholz, D. et al. Bone marrow transplantation


abolishes inhibition of arteriogenesis in placenta growth factor (PlGF)−/− mice. _J. Mol. Cell. Cardiol._ 35(2), 177–184 (2003). Article  Google Scholar  * Ito, W.D. et al. Monocyte


chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. _Circ. Res._ 80(6), 829–837 (1997). Article  Google Scholar  * van Royen, N. et al.


Exogenous application of transforming growth factor-β1 stimulates arteriogenesis in the peripheral circulation. _FASEB J._ 16(3), 432–434 (2002). Article  Google Scholar  * Grundmann, S. et


al. Anti-tumor necrosis factor-α therapies attenuate adaptive arteriogenesis in the rabbit. _Am. J. Physiol. Heart Circ. Physiol._ 289(4), H1497–H1505 (2005). Article  Google Scholar  *


Kopelman, D., Hirshhorn, G. & Hashmonai, M. Prevention of limb loss in critical ischaemia by arterialization of the superficial venous system: an experimental study in dogs. _Cardiovasc.


Surg._ 6(4), 384–388 (1998). Article  Google Scholar  * Rakue, H. et al. Low-dose basic fibroblast growth factor and vascular endothelial growth factor for angiogenesis in canine acute


hindlimb insufficiency. _Jpn. Circ. J._ 62(12), 933–939 (1998). Article  Google Scholar  * Herzog, S., Sager, H., Khmelevski, E., Deylig, A. & Ito, W.D. Collateral arteries grow from


preexisting anastomoses in the rat hindlimb. _Am. J. Physiol. Heart Circ. Physiol._ 283(5), H2012–H2020 (2002). Article  Google Scholar  * Yang, H.T., Deschenes, M.R., Ogilvie, R.W. &


Terjung, R.L. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. _Circ. Res._ 79(1), 62–69 (1996). Article  Google Scholar  * Kondo, T.


& Watanabe, Y. A heritable hyperlipemic rabbit [in Japanese]. _Jikken Dobutsu._ 24(3), 89–94 (1975). Google Scholar  * Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N.


Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. _Science_ 258(5081), 468–471 (1992). Article  Google Scholar  * Plump, A.S. et al. Severe


hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. _Cell_ 71(2), 343–353 (1992). Article  Google Scholar  * van


Royen, N. et al. Effects of local MCP-1 protein therapy on the development of the collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits. _Cardiovasc. Res._ 57(1),


178–185 (2003). Article  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Experimental Cardiology, UMC, University of Utrecht, The Netherlands


Imo E. Hoefer MD, PhD * Department of Cardiology, AMC, University of Amsterdam, The Netherlands Niels van Royen MD, PhD * BioVisioN AG, Medical Research, Hannover, 30625, Germany Marco M.


Jost PhD Authors * Imo E. Hoefer MD, PhD View author publications You can also search for this author inPubMed Google Scholar * Niels van Royen MD, PhD View author publications You can also


search for this author inPubMed Google Scholar * Marco M. Jost PhD View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to


Imo E. Hoefer MD, PhD. ETHICS DECLARATIONS COMPETING INTERESTS Hoefer and van Royen are shareholders of Perfusion Technologies GmbH, Freiburg, Germany. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hoefer, I., van Royen, N. & Jost, M. Experimental models of arteriogenesis: differences and implications. _Lab Anim_ 35, 36–44 (2006).


https://doi.org/10.1038/laban0206-36 Download citation * Received: 23 December 2004 * Accepted: 22 August 2005 * Issue Date: February 2006 * DOI: https://doi.org/10.1038/laban0206-36 SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative