Surface of bacteriorhodopsin revealed by high-resolution electron crystallography

feature-image

Play all audios:

Loading...

ABSTRACT Bacteriorhodopsin is a transmembrane protein that uses light energy, absorbed by its chromophore retinal, to pump protons from the cytoplasm of bacteria such as _Halobacterium


salinarium_ into the extracellular space1,2. It is made up of seven α-helices, and in the bacterium forms natural, two-dimensional crystals called purple membranes. We have analysed these


crystals by electron cryo-microscopy to obtain images of bacteriorhodopsin at 3.0 å resolution. The structure covers nearly all 248 amino acids, including loops outside the membrane, and


reveals the distribution of charged residues on both sides of the membrane surface. In addition, analysis of the electron-potential map produced by this method allows the determination of


the charge status of these residues. On the extracellular side, four glutamate residues surround the entrance to the proton channel, whereas on the cytoplasmic side, four aspartic acids


occur in a plane at the boundary of the hydrophobic–hydrophilic interface. The negative charges produced by these aspartate residues is encircled by areas of positive charge that may


facilitate accumulation and lateral movement of protons on this surface. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS STRUCTURAL BASIS FOR THE PROLONGED PHOTOCYCLE OF SENSORY RHODOPSIN


II REVEALED BY SERIAL SYNCHROTRON CRYSTALLOGRAPHY Article Open access 11 April 2025 MECHANISMS OF INWARD TRANSMEMBRANE PROTON TRANSLOCATION Article 29 June 2023 CRYO-EM STRUCTURE AND


DYNAMICS OF THE GREEN-LIGHT ABSORBING PROTEORHODOPSIN Article Open access 05 July 2021 REFERENCES * Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of


_Halobacterium halobium_. _Nature New Biol._ 233, 149–152 (1971). Article  CAS  Google Scholar  * Oesterhelt, D. & Stoeckenius, W. Functions of a new photoreceptor membrane. _Proc. Natl


Acad. Sci. USA_ 70, 2853–2857 (1973). Article  ADS  CAS  Google Scholar  * Khorana, H. G. Bacteriorhodopsin, a membrane protein that uses light to translocate protons. _J. Biol. Chem._ 263,


7439–7442 (1988). CAS  PubMed  Google Scholar  * Lanyi, J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. _Biochim. Biophys. Acta_ 1183, 241–261


(1993). Article  CAS  Google Scholar  * Henderson, R. _et al_. Amodel for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy. _J. Mol. Biol._ 213, 899–929


(1990). Article  CAS  Google Scholar  * Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of


bacteriorhodopsin. _J. Mol. Biol._ 259, 393–421 (1996). Article  CAS  Google Scholar  * Fujiyoshi, Y. _et al_. Development of a superfluid helium stage for high-resolution electron


microscopy. _Ultramicroscopy_ 38, 241–251 (1991). Article  Google Scholar  * Sakata, K., Tahara, Y., Morikawa, K., Fujiyoshi, Y. & Kimura, Y. Amethod for observing cross-sectional views


of biomembranes. _Ultramicroscopy_ 45, 253–261 (1992). Article  CAS  Google Scholar  * Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. The role of 96 Asp in proton translocation by


bacteriorhodopsin. _Proc. Natl Acad. Sci. USA_ 86, 4943–4947 (1989). Article  ADS  CAS  Google Scholar  * Otto, H. _et al_. Aspartic acid-96 is the internal proton donor in the reprotonation


of the Schiff base of bacteriorhodopsin. _Proc. Natl Acad. Sci. USA_ 86, 9228–9232 (1989). Article  ADS  CAS  Google Scholar  * Braiman, M. S. _et al_. Vibrational spectroscopy of


bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. _Biochemistry_ 27, 8516–8520 (1988). Article  CAS  Google


Scholar  * Kimura, Y. & Ikegami, A. Local dielectric properties around polar region of lipid bilayer membranes. _J. Membr. Biol._ 85, 225–231 (1985). Article  CAS  Google Scholar  *


Brown, L. S. _et al_. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. _J. Biol. Chem._ 270, 27122–27126 (1995). Article  CAS  Google


Scholar  * Kushwaha, S. C., Kates, M. & Stoeckenius, W. Comparison of purple membrane from _Halobacterium cutirubrum_ and _Halobacterium halobium_. _Biochim. Biophys. Acta_ 426, 703–710


(1976). Article  CAS  Google Scholar  * Subramaniam, S., Greenhalgh, D. A. & Khorana, H. G. Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative


counterion to the Schiff base. _J. Biol. Chem._ 267, 25730–25733 (1992). CAS  PubMed  Google Scholar  * Riesle, J., Oesterhelt, D., Dencher, N. A. & Heberle, J. D38 is an essential part


of the proton translocation pathway in bacteriorhodopsin. _Biochemistry_ 35, 6635–6643 (1996). Article  CAS  Google Scholar  * Mogi, T., Stern, L. J., Marti, T., Chao, B. H. & Khorana,


H. G. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. _Proc. Natl Acad. Sci. USA_ 85, 4148–4152 (1988). Article  ADS  CAS  Google Scholar  * Oesterhelt, D.


& Stoeckenius, W. Isolation of the cell membrane of _Halobacterium halobium_ and its fractionation into red and purple membrane. _Methods Enzymol._ 31, 667–678 (1974). Article  CAS 


Google Scholar  * Seiff, F., Wallat, I., Ermann, P. & Heyn, M. Aneutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin. _Proc. Natl Acad. Sci.


USA_ 82, 3227–3231 (1985). Article  ADS  CAS  Google Scholar  * Baldwin, J. & Henderson, R. Measurement and evaluation of electron diffraction patterns from two-dimensional crystals.


_Ultramicroscopy_ 14, 319–333 (1984). Article  CAS  Google Scholar  * Ceska, T. A. & Henderson, R. Analysis of high-resolution electron diffraction patterns from purple membrane labeled


with heavy atoms _J. Mol. Biol._ 213, 539–560 (1990). Article  CAS  Google Scholar  * Collaborate Computational Project No. 4 _Acta Crystallogr. D_ 50, 760–763 (1994). * International Union


of Crystallography _International table for Crystallography Volume C: Mathematical, Physical and Chemical Table_ (corrected edn) (ed. Wilson, A. J. C.) (Kluwer, Dordrecht, 1995). Google


Scholar  Download references ACKNOWLEDGEMENTS We thank M. Ikehara for encouragement and support; W. Kühlbrandt and D. N. Wang for help with data processing; R. Henderson, S. Fuller, J.


Lanyi, W. Stoeckenius, Y. Harada and J.Sasaki for helpful discussions; T. Miyata for preparing this manuscript; and Digital Equipment Corporation for help with computers. AUTHOR INFORMATION


Author notes * Yoshinori Fujiyoshi Present address: Department of Biophysics, Faculty of Science, Kyoto University, Oiwake Kitashirakawa, Sakyou-ku, 606-01, Kyoto, Japan * Dmitry G.


Vassylyev Present address: International Institute for Advanced Research (IIAR), Matsushita Electric Industrial Co., Ltd., 3-4 Hikaridai, Seika, Soraku, Kyoto, 619-02, Japan * Atsuo Miyazawa


Present address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK * Akinori Kidera Present address: Department of Chemistry, Faculty of Science, Kyoto University,


Oiwake Kitashirakawa, Sakyou-ku, Kyoto, 606-01, Japan AUTHORS AND AFFILIATIONS * Biomolecular Engineering Research Institute (formerly Protein Engineering Institute), 6-2-3 Fureudai, Suita,


565, Osaka, Japan Yoshiaki Kimura, Dmitry G. Vassylyev, Atsuo Miyazawa & Akinori Kidera * Rational Drug Design Laboratory, 4-1-4 Misato, Matsukawa, 960-12, Fukushima, Japan Masaaki


Matsushima * International Institute for Advanced Research, Matsushita Electric Industrial Co., 3-4 Hikaridai, Seika, Soraku, 619-02, Kyoto, Japan Kaoru Mitsuoka, Kazuyoshi Murata, Teruhisa


Hirai & Yoshinori Fujiyoshi * Department of Biophysics, Faculty of Science, Kyoto University, Oiwake Kitashirakawa, Sakyou-ku, 606-01, Kyoto, Japan Dmitry G. Vassylyev, Atsuo Miyazawa 


& Akinori Kidera Authors * Yoshiaki Kimura View author publications You can also search for this author inPubMed Google Scholar * Dmitry G. Vassylyev View author publications You can


also search for this author inPubMed Google Scholar * Atsuo Miyazawa View author publications You can also search for this author inPubMed Google Scholar * Akinori Kidera View author


publications You can also search for this author inPubMed Google Scholar * Masaaki Matsushima View author publications You can also search for this author inPubMed Google Scholar * Kaoru


Mitsuoka View author publications You can also search for this author inPubMed Google Scholar * Kazuyoshi Murata View author publications You can also search for this author inPubMed Google


Scholar * Teruhisa Hirai View author publications You can also search for this author inPubMed Google Scholar * Yoshinori Fujiyoshi View author publications You can also search for this


author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Yoshiaki Kimura. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kimura, Y.,


Vassylyev, D., Miyazawa, A. _et al._ Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. _Nature_ 389, 206–211 (1997). https://doi.org/10.1038/38323 Download


citation * Received: 21 October 1996 * Accepted: 02 June 1997 * Issue Date: 11 September 1997 * DOI: https://doi.org/10.1038/38323 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative