
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT A striking link exists between advanced age and increased incidence of cancer. Here I review how several of the age-related molecular and physiological changes might act in concert
to promote cancer, and in particular epithelial carcinogenesis. Experimental data indicate that the aged, cancer-prone phenotype might represent the combined pathogenetic effects of mutation
load, epigenetic regulation, telomere dysfunction and altered stromal milieu. Further verification of the role of these effects should in turn lead to the design of effective therapeutics
for the treatment and prevention of cancer in the aged. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS
Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on
SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about
institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE COMPLEX INTERPLAY BETWEEN AGING AND CANCER Article 04 March 2025 AGE
INFLUENCES ON THE MOLECULAR PRESENTATION OF TUMOURS Article Open access 11 January 2022 AN INTEGRATIVE ANALYSIS OF THE AGE-ASSOCIATED MULTI-OMIC LANDSCAPE ACROSS CANCERS Article Open access
20 April 2021 REFERENCES * American Cancer Society. _Cancer Facts and Figures 2000_ 1–7 (American Cancer Society, Atlanta, 2000). * Bishop, J. M. Molecular themes in oncogenesis. _Cell_ 64,
235–248 (1991). Article CAS PubMed Google Scholar * Nowell, P. C. The clonal evolution of tumor cell populations. _Science_ 194, 23–28 (1976). Article ADS CAS PubMed Google Scholar
* Vogelstein, B. _ et al_. Genetic alterations during colorectal-tumor development. _ N. Engl. J. Med._ 319, 525–532 (1988). Article CAS PubMed Google Scholar * Balaban, G. B., Herlyn,
M., Clark, W. H. Jr & Nowell, P. C. Karyotypic evolution in human malignant melanoma. _Cancer Genet. Cytogenet._ 19, 113–122 ( 1986). Article CAS PubMed Google Scholar * Naylor, S.
L., Johnson, B. E., Minna, J. D. & Sakaguchi, A. Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer . _Nature_ 329, 451–454 (1987). Article ADS CAS PubMed
Google Scholar * James, C. D. _ et al_. Clonal genomic alterations in glioma malignancy stages. _ Cancer Res._ 48, 5546–5551 (1988). CAS PubMed Google Scholar * Rabinovitch, P. S., Reid,
B. J., Haggitt, R. C., Norwood, T. H. & Rubin, C. E. Progression to cancer in Barrett's esophagus is associated with genomic instability. _Lab. Invest. _ 60, 65–71 ( 1988). Google
Scholar * Harman, D. Aging: a theory based on free-radical and radiation chemistry. _ J. Gerontol._ 6, 298–300 (1956). Article Google Scholar * Ames, B. N., Shigenaga, M. K. & Hagen,
T. M. Oxidants, antioxidants and the degenerative diseases of aging. _Proc. Natl Acad. Sci. USA_ 90, 7915–7922 (1993). Article ADS CAS PubMed PubMed Central Google Scholar * Minnick,
D. T. & Kunkel, T. A. DNA synthesis errors, mutators and cancer. _Cancer Surv._ 28, 3–20 (1996). CAS PubMed Google Scholar * Oller, A. R., Rastogi, P., Morgenthaler, S. & Thilly,
W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. _ Mutat. Res._ 216, 149–161 (1989).
Article CAS PubMed Google Scholar * Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. _Genetics_ 148, 1483– 1490 (1998). CAS PubMed PubMed Central Google Scholar *
Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. _Br. J. Cancer_ 8, 1–12 (1954). Article CAS PubMed PubMed Central Google Scholar *
Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. _Mol. Carcinog._ 7, 139– 146 (1993). Article CAS PubMed Google Scholar * Hanahan, D.
& Weinberg, R. A. The hallmarks of cancer. _ Cell_ 100, 57–70 ( 2000). Article CAS PubMed Google Scholar * Loeb, L. A. Mutator phenotype may be required for multistage
carcinogenesis. _ Cancer Res._ 51, 3075–3079 (1991). CAS PubMed Google Scholar * Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. _Cell_ 87, 159 –170 (1996).
Article CAS PubMed Google Scholar * Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. _ Nature_ 386, 623–627 ( 1997). Article ADS CAS
PubMed Google Scholar * Gray, J. W. & Collins, C. Genome changes and gene expression in human solid tumors. _Carcinogenesis_ 21, 443–452 (2000). Article CAS PubMed Google Scholar *
Weinberg, R. The cat and mouse games that genes, viruses, and cells play. _Cell _ 88, 573–575 ( 1997). Article CAS PubMed Google Scholar * Turker, M. S. Estimation of mutation
frequencies in normal mammalian cells and the development of cancer. _Semin. Cancer Biol._ 8, 407– 419 (1998). Article CAS PubMed Google Scholar * Dolle, M. E. _ et al_. Rapid
accumulation of genome rearrangements in liver but not in brain of old mice. _Nature Genet._ 17, 431–434 (1997). Article CAS PubMed Google Scholar * Dolle, M. E., Snyder, W. K., Gossen,
J. A., Lohman, P. H. & Vijg, J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. _Proc. Natl Acad. Sci. USA_ 97, 8403–8408 (2000). Article
ADS CAS PubMed PubMed Central Google Scholar * Vijg, J. & Dolle, M. E. T. in _Handbook of the Biology of Ageing_ 5th edn (eds Masoro, E. J. & Austad, S. N.) (Academic, in the
press). * Curtis, H. & Crowley, C. Chromosome aberrations in liver cells in relation to the somatic mutation theory of aging. _Radiat. Res._ 19, 337–344 ( 1963). Article ADS CAS
PubMed Google Scholar * Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. _Science_ 287, 2486–2492 (2000). Article ADS CAS PubMed
Google Scholar * Ramsey, M. J. _ et al_. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. _Mutat. Res._ 338, 95–106 (
1995). Article ADS CAS PubMed Google Scholar * Jacobs, P., Brunton, M., Brown, W., Doll, R. & Goldstein, H. Change of human chromosome count distributions with age: evidence for a
sex difference. _Nature_ 197, 1080–1081 (1963). Article ADS CAS PubMed Google Scholar * Tucker, J. D., Spruill, M. D., Ramsey, M. J., Director, A. D. & Nath, J. Frequency of
spontaneous chromosome aberrations in mice: effects of age. _Mutat. Res._ 425 , 135–141 (1999). Article CAS PubMed Google Scholar * Moriwaki, S., Ray, S., Tarone, R. E., Kraemer, K. H.
& Grossman, L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. _Mutat. Res._ 364, 117– 123
(1996). Article PubMed Google Scholar * Goukassian, D. _ et al_. Mechanisms and implications of the age-associated decrease in DNA repair capacity. _FASEB J._ 14, 1325 –1334 (2000).
Article CAS PubMed Google Scholar * Liu, S. C., Parsons, C. S. & Hanawalt, P. C. DNA repair response in human epidermal keratinocytes from donors of different age. _J. Invest.
Dermatol._ 79, 330–335 (1982). Article CAS PubMed Google Scholar * Kolodner, R. D. _ et al_. Germ-line msh6 mutations in colorectal cancer families. _ Cancer Res._ 59, 5068–5074 (1999).
CAS PubMed Google Scholar * Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. _Trends Genet._ 16, 168–174 (2000). Article CAS PubMed
Google Scholar * Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age . _Nature Genet._ 21, 163– 167 (1999). Article CAS PubMed Google Scholar * Issa, J. P. _ et al_.
Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. _Nature Genet._ 7, 536–540 (1994). Article CAS PubMed Google Scholar * Issa, J. P. Aging, DNA
methylation and cancer. _Crit. Rev. Oncol. Hematol._ 32, 31–43 (1999). Article CAS PubMed Google Scholar * Cormier, R. T. & Dove, W. F. Dnmt1N/+ reduces the net growth rate and
multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance
allele. _Cancer Res._ 60, 3965–3970 ( 2000). CAS PubMed Google Scholar * Laird, P. W. _ et al_. Suppression of intestinal neoplasia by DNA hypomethylation . _Cell_ 81, 197–205 (1995).
Article CAS PubMed Google Scholar * Rhee, I. _et al_. CpG methylation is maintained in human cancer cells lacking DNMT1 . _Nature_ 404, 1003–1007 (2000). Article ADS CAS PubMed
Google Scholar * DePinho, R. A. & Sherr, C. J. Cellular senescence: mitotic clock or culture shock? _Cell_ 102, 407–410 (2000). Article PubMed Google Scholar * Atkin, N. B. Solid
tumor cytogenetics. Progress since 1979. _Cancer Genet. Cytogenet. _ 40, 3–12 (1989 ). Article CAS PubMed Google Scholar * Artandi, S. E. _ et al_. Telomere dysfunction promotes
non-reciprocal translocations and epithelial cancers in mice. _Nature_ 406, 641–645 (2000). Article ADS CAS PubMed Google Scholar * Greider, C. Telomerase activity, cell proliferation,
and cancer. _Proc. Natl Acad. Sci. USA_ 95, 90 (1998). Article ADS CAS PubMed PubMed Central Google Scholar * Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten
during ageing of human fibroblasts . _Nature_ 345, 458–460 (1990). Article ADS CAS PubMed Google Scholar * Hastie, N. D. _ et al_. Telomere reduction in human colorectal carcinoma and
with ageing. _Nature_ 346, 866– 868 (1990). Article ADS CAS PubMed Google Scholar * Allsopp, R. C. _ et al_. Telomere length predicts replicative capacity of human fibroblasts . _Proc.
Natl Acad. Sci. USA_ 89, 10114– 10118 (1992). Article ADS CAS PubMed PubMed Central Google Scholar * Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S. & Bacchetti, S. Telomerase
activity associated with acquisition of malignancy in human colorectal cancer. _Cancer Res._ 55, 2533–2536 (1995). CAS PubMed Google Scholar * Kipling, D. & Cooke, H. J. Hypervariable
ultra-long telomeres in mice. _Nature_ 347, 400– 402 (1990). Article ADS CAS PubMed Google Scholar * Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of
mouse telomerase and telomere length. _Proc. Natl Acad. Sci. USA_ 92, 4818–4822 (1995). Article ADS CAS PubMed PubMed Central Google Scholar * Broccoli, D., Godley, L. A., Donehower,
L. A., Varmus, H. E. & de, L. T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell
proliferation. _Mol. Cell. Biol._ 16, 3765–3772 (1996). Article CAS PubMed PubMed Central Google Scholar * Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A.
Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. _Oncogene _ 16, 1723–1730 ( 1998). Article CAS PubMed Google Scholar *
Martin-Rivera, L., Herrera, E., Albar, J. & Blasco, M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. _ Proc. Natl Acad. Sci. USA_ 95, 10471– 10476
(1998). Article ADS CAS PubMed PubMed Central Google Scholar * Counter, C. M. _ et al_. Telomere shortening associated with chromosome instability is arrested in immortal cells which
express telomerase activity. _ EMBO J._ 11, 1921–1929 ( 1992). Article CAS PubMed PubMed Central Google Scholar * McClintock, B. The stability of broken ends of chromosomes in _Zea
mays_. _ Genetics_ 26, 234–282 ( 1941). CAS PubMed PubMed Central Google Scholar * Nishizaki, T. _ et al_. Genetic alterations in primary breast cancers and their metastases: direct
comparison using modified comparative genomic hybridization. _ Genes Chromosomes Cancer_ 19, 267–272 (1997). Article CAS PubMed Google Scholar * Buerger, H. _ et al_. Comparative genomic
hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. _J. Pathol. _ 187, 396–402 ( 1999). Article CAS PubMed Google Scholar * Al-Mulla, F.,
Keith, W. N., Pickford, I. R., Going, J. J. & Birnie, G. D. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases . _Genes
Chromosomes Cancer_ 24, 306– 314 (1999). Article CAS PubMed Google Scholar * Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and
adenomatous polyp progression in multistep colorectal carcinogenesis. _Cancer Res._ 58, 4052–4054 (1998). CAS PubMed Google Scholar * Lee, H. W. _ et al_. Essential role of mouse
telomerase in highly proliferative organs. _Nature_ 392, 569– 574 (1998). Article ADS CAS PubMed Google Scholar * Rudolph, K. L. _ et al_. Longevity, stress response, and cancer in
aging telomerase-deficient mice. _Cell_ 96, 701–712 (1999). Article CAS PubMed Google Scholar * de Lange, T. Activation of telomerase in a human tumor. _Proc. Natl Acad. Sci. USA_ 91,
2882–2885 ( 1994). Article ADS CAS PubMed PubMed Central Google Scholar * Foley, K. P. & Eisenman, R. N. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the
MYC/MAX/MAD network. _ Biochim. Biophys. Acta_ 1423, M37–M47 (1999). CAS PubMed Google Scholar * Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A.
Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. _Science_ 287, 1253–1258 (2000). Article ADS CAS PubMed Google Scholar * Kitada, T., Seki, S., Kawakita,
N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. _ Biochem. Biophys. Res. Commun._ 211, 33– 39 (1995). Article CAS PubMed Google Scholar * Miura, N. _et al_.
Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. _Cancer Genet. Cytogenet._ 93, 56–62 (1997). Article CAS PubMed Google Scholar * Urabe,
Y. _et al_. Telomere length in human liver diseases. _Liver_ 16, 293–297 (1996). Article CAS PubMed Google Scholar * Weinberg, R. A. The retinoblastoma protein and cell cycle control.
_Cell_ 81, 323–330 (1995). Article CAS PubMed Google Scholar * Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. _Genes Dev._ 7, 546–554
(1993). Article CAS PubMed Google Scholar * Symonds, H. _ et al_. p53-dependent apoptosis suppresses tumor growth and progression in vivo. _Cell_ 78, 703–711 (1994). Article CAS PubMed
Google Scholar * Morgenbesser, S. D., Williams, B. O., Jacks, T. & DePinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. _Nature_ 371, 72–74
(1994). Article ADS CAS PubMed Google Scholar * Kim, N. W. _ et al_. Specific association of human telomerase activity with immortal cells and cancer. _Science_ 266, 2011– 2015 (1994).
Article ADS CAS PubMed Google Scholar * Blasco, M. A., Rizen, M., Greider, C. W. & Hanahan, D. Differential regulation of telomerase activity and telomerase RNA during multi-stage
tumorigenesis. _Nature Genet._ 12, 200– 204 (1996). Article CAS PubMed Google Scholar * Greenberg, R. A. _ et al_. Short dysfunctional telomeres impair tumorigenesis in the INK4a(Δ2/3)
cancer-prone mouse. _Cell_ 97, 515–525 (1999). Article CAS PubMed Google Scholar * Hahn, W. C. _ et al_. Creation of human tumour cells with defined genetic elements . _Nature_ 400,
464–468 (1999). Article ADS CAS PubMed Google Scholar * Chin, L. & DePinho, R. A. Flipping the oncogene switch: illumination of tumor maintenance and regression. _Trends Genet. _
16, 147–150 ( 2000). Article CAS PubMed Google Scholar * Chin, L. _et al_. Essential role for oncogenic RAS in tumour maintenance. _ Nature_ 400, 468–472 ( 1999). Article ADS CAS
PubMed Google Scholar * Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single
oncogenic lesion. _Mol. Cell_ 3 , 565–577 (1999). Article CAS PubMed Google Scholar * Gelman, R., Watson, A., Bronson, R. & Yunis, E. Murine chromosomal regions correlated with
longevity. _Genetics_ 118, 693–704 (1988). CAS PubMed PubMed Central Google Scholar * Cunha, G. & Hom, Y. Role of mesenchymal-epithelial interactions in mammary gland development.
_J. Mamm. Gland Biol. Neoplasia_ 1, 21–35 (1996). Article CAS Google Scholar * Olumi, A. F. _ et al_. Carcinoma-associated fibroblasts direct tumor progression of initiated human
prostatic epithelium. _Cancer Res._ 59, 5002–5011 (1999). CAS PubMed Google Scholar * Dimri, G. P. _ et al_. A biomarker that identifies senescent human cells in culture and in aging skin
in vivo. _Proc. Natl Acad. Sci. USA_ 92, 9363–9367 (1995). Article ADS CAS PubMed PubMed Central Google Scholar * Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W.
D. Microarray analysis of replicative senescence. _Curr. Biol._ 9, 939– 945 (1999). Article CAS PubMed Google Scholar * Campisi, J. Aging and cancer: the double-edged sword of
replicative senescence. _ J. Am. Geriatr. Soc._ 45, 482–488 (1997). Article CAS PubMed Google Scholar * Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic
ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. _ Cell_ 88, 593–602 ( 1997). Article CAS PubMed Google Scholar * Di Leonardo, A., Linke, S. P.,
Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. _Genes Dev._ 8, 2540–2551 (1994). Article
CAS PubMed Google Scholar * Coussens, L. M. _ et al_. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. _Genes Dev._ 13, 1382–1397 (1999).
Article CAS PubMed PubMed Central Google Scholar * Bergers, G. _ et al_. Matrix metalloprotein-9 triggers the angiogenic switch during carcinogenesis. _Nature Cell Biol._ 2, 737 –744
(2000). Article CAS PubMed Google Scholar * Coussens, L., Tinkle, C., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. _ Cell_
(in the press). * Millis, A. J., Hoyle, M., McCue, H. M. & Martini, H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human
fibroblasts. _Exp. Cell Res._ 201, 373 –379 (1992). Article CAS PubMed Google Scholar * Sternlicht, M. D. _ et al_. The stromal proteinase MMP3/stromelysin-1 promotes mammary
carcinogenesis. _Cell_ 98, 137– 146 (1999). Article CAS PubMed PubMed Central Google Scholar * Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions.
_Carcinogenesis_ 21, 461–467 (2000). Article CAS PubMed Google Scholar * Piantanelli, L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence
and mortality. _Ann. NY Acad. Sci._ 521, 99–109 (1988). Article ADS CAS PubMed Google Scholar * Schwartz, R. A. _ Skin Cancer: Recognition and Management_ (Springer, New York, 1988).
Download references ACKNOWLEDGEMENTS I apologize to my colleagues whose relevant work I was unable to cite owing to space and reference limitations. I thank J. Vijg, D. Hanahan, J. Campisi,
J.-P. Issa, N. Schreiber-Agus, G. Merlino, S. Mellis, L. Chin, S. Weiler and members of my laboratory for helpful discussions and critical comments. R.A.D. is supported by the National
Institutes of Health and is an American Cancer Society Research Professor and a Steven and Michele Kirsch Foundation Investigator. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments
of Adult Oncology, Medicine and Genetics Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA Ronald A. DePinho Authors * Ronald A. DePinho View author
publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Ronald A. DePinho. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS
ARTICLE CITE THIS ARTICLE DePinho, R. The age of cancer. _Nature_ 408, 248–254 (2000). https://doi.org/10.1038/35041694 Download citation * Issue Date: 09 November 2000 * DOI:
https://doi.org/10.1038/35041694 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently
available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative