The age of cancer | Nature

feature-image

Play all audios:

Loading...

ABSTRACT A striking link exists between advanced age and increased incidence of cancer. Here I review how several of the age-related molecular and physiological changes might act in concert


to promote cancer, and in particular epithelial carcinogenesis. Experimental data indicate that the aged, cancer-prone phenotype might represent the combined pathogenetic effects of mutation


load, epigenetic regulation, telomere dysfunction and altered stromal milieu. Further verification of the role of these effects should in turn lead to the design of effective therapeutics


for the treatment and prevention of cancer in the aged. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE COMPLEX INTERPLAY BETWEEN AGING AND CANCER Article 04 March 2025 AGE


INFLUENCES ON THE MOLECULAR PRESENTATION OF TUMOURS Article Open access 11 January 2022 AN INTEGRATIVE ANALYSIS OF THE AGE-ASSOCIATED MULTI-OMIC LANDSCAPE ACROSS CANCERS Article Open access


20 April 2021 REFERENCES * American Cancer Society. _Cancer Facts and Figures 2000_ 1–7 (American Cancer Society, Atlanta, 2000). * Bishop, J. M. Molecular themes in oncogenesis. _Cell_ 64,


235–248 (1991). Article  CAS  PubMed  Google Scholar  * Nowell, P. C. The clonal evolution of tumor cell populations. _Science_ 194, 23–28 (1976). Article  ADS  CAS  PubMed  Google Scholar 


* Vogelstein, B. _ et al_. Genetic alterations during colorectal-tumor development. _ N. Engl. J. Med._ 319, 525–532 (1988). Article  CAS  PubMed  Google Scholar  * Balaban, G. B., Herlyn,


M., Clark, W. H. Jr & Nowell, P. C. Karyotypic evolution in human malignant melanoma. _Cancer Genet. Cytogenet._ 19, 113–122 ( 1986). Article  CAS  PubMed  Google Scholar  * Naylor, S.


L., Johnson, B. E., Minna, J. D. & Sakaguchi, A. Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer . _Nature_ 329, 451–454 (1987). Article  ADS  CAS  PubMed 


Google Scholar  * James, C. D. _ et al_. Clonal genomic alterations in glioma malignancy stages. _ Cancer Res._ 48, 5546–5551 (1988). CAS  PubMed  Google Scholar  * Rabinovitch, P. S., Reid,


B. J., Haggitt, R. C., Norwood, T. H. & Rubin, C. E. Progression to cancer in Barrett's esophagus is associated with genomic instability. _Lab. Invest. _ 60, 65–71 ( 1988). Google


Scholar  * Harman, D. Aging: a theory based on free-radical and radiation chemistry. _ J. Gerontol._ 6, 298–300 (1956). Article  Google Scholar  * Ames, B. N., Shigenaga, M. K. & Hagen,


T. M. Oxidants, antioxidants and the degenerative diseases of aging. _Proc. Natl Acad. Sci. USA_ 90, 7915–7922 (1993). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Minnick,


D. T. & Kunkel, T. A. DNA synthesis errors, mutators and cancer. _Cancer Surv._ 28, 3–20 (1996). CAS  PubMed  Google Scholar  * Oller, A. R., Rastogi, P., Morgenthaler, S. & Thilly,


W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. _ Mutat. Res._ 216, 149–161 (1989).


Article  CAS  PubMed  Google Scholar  * Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. _Genetics_ 148, 1483– 1490 (1998). CAS  PubMed  PubMed Central  Google Scholar  *


Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. _Br. J. Cancer_ 8, 1–12 (1954). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. _Mol. Carcinog._ 7, 139– 146 (1993). Article  CAS  PubMed  Google Scholar  * Hanahan, D.


& Weinberg, R. A. The hallmarks of cancer. _ Cell_ 100, 57–70 ( 2000). Article  CAS  PubMed  Google Scholar  * Loeb, L. A. Mutator phenotype may be required for multistage


carcinogenesis. _ Cancer Res._ 51, 3075–3079 (1991). CAS  PubMed  Google Scholar  * Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. _Cell_ 87, 159 –170 (1996).


Article  CAS  PubMed  Google Scholar  * Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. _ Nature_ 386, 623–627 ( 1997). Article  ADS  CAS 


PubMed  Google Scholar  * Gray, J. W. & Collins, C. Genome changes and gene expression in human solid tumors. _Carcinogenesis_ 21, 443–452 (2000). Article  CAS  PubMed  Google Scholar  *


Weinberg, R. The cat and mouse games that genes, viruses, and cells play. _Cell _ 88, 573–575 ( 1997). Article  CAS  PubMed  Google Scholar  * Turker, M. S. Estimation of mutation


frequencies in normal mammalian cells and the development of cancer. _Semin. Cancer Biol._ 8, 407– 419 (1998). Article  CAS  PubMed  Google Scholar  * Dolle, M. E. _ et al_. Rapid


accumulation of genome rearrangements in liver but not in brain of old mice. _Nature Genet._ 17, 431–434 (1997). Article  CAS  PubMed  Google Scholar  * Dolle, M. E., Snyder, W. K., Gossen,


J. A., Lohman, P. H. & Vijg, J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. _Proc. Natl Acad. Sci. USA_ 97, 8403–8408 (2000). Article 


ADS  CAS  PubMed  PubMed Central  Google Scholar  * Vijg, J. & Dolle, M. E. T. in _Handbook of the Biology of Ageing_ 5th edn (eds Masoro, E. J. & Austad, S. N.) (Academic, in the


press). * Curtis, H. & Crowley, C. Chromosome aberrations in liver cells in relation to the somatic mutation theory of aging. _Radiat. Res._ 19, 337–344 ( 1963). Article  ADS  CAS 


PubMed  Google Scholar  * Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. _Science_ 287, 2486–2492 (2000). Article  ADS  CAS  PubMed 


Google Scholar  * Ramsey, M. J. _ et al_. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. _Mutat. Res._ 338, 95–106 (


1995). Article  ADS  CAS  PubMed  Google Scholar  * Jacobs, P., Brunton, M., Brown, W., Doll, R. & Goldstein, H. Change of human chromosome count distributions with age: evidence for a


sex difference. _Nature_ 197, 1080–1081 (1963). Article  ADS  CAS  PubMed  Google Scholar  * Tucker, J. D., Spruill, M. D., Ramsey, M. J., Director, A. D. & Nath, J. Frequency of


spontaneous chromosome aberrations in mice: effects of age. _Mutat. Res._ 425 , 135–141 (1999). Article  CAS  PubMed  Google Scholar  * Moriwaki, S., Ray, S., Tarone, R. E., Kraemer, K. H.


& Grossman, L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. _Mutat. Res._ 364, 117– 123


(1996). Article  PubMed  Google Scholar  * Goukassian, D. _ et al_. Mechanisms and implications of the age-associated decrease in DNA repair capacity. _FASEB J._ 14, 1325 –1334 (2000).


Article  CAS  PubMed  Google Scholar  * Liu, S. C., Parsons, C. S. & Hanawalt, P. C. DNA repair response in human epidermal keratinocytes from donors of different age. _J. Invest.


Dermatol._ 79, 330–335 (1982). Article  CAS  PubMed  Google Scholar  * Kolodner, R. D. _ et al_. Germ-line msh6 mutations in colorectal cancer families. _ Cancer Res._ 59, 5068–5074 (1999).


CAS  PubMed  Google Scholar  * Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. _Trends Genet._ 16, 168–174 (2000). Article  CAS  PubMed 


Google Scholar  * Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age . _Nature Genet._ 21, 163– 167 (1999). Article  CAS  PubMed  Google Scholar  * Issa, J. P. _ et al_.


Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. _Nature Genet._ 7, 536–540 (1994). Article  CAS  PubMed  Google Scholar  * Issa, J. P. Aging, DNA


methylation and cancer. _Crit. Rev. Oncol. Hematol._ 32, 31–43 (1999). Article  CAS  PubMed  Google Scholar  * Cormier, R. T. & Dove, W. F. Dnmt1N/+ reduces the net growth rate and


multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance


allele. _Cancer Res._ 60, 3965–3970 ( 2000). CAS  PubMed  Google Scholar  * Laird, P. W. _ et al_. Suppression of intestinal neoplasia by DNA hypomethylation . _Cell_ 81, 197–205 (1995).


Article  CAS  PubMed  Google Scholar  * Rhee, I. _et al_. CpG methylation is maintained in human cancer cells lacking DNMT1 . _Nature_ 404, 1003–1007 (2000). Article  ADS  CAS  PubMed 


Google Scholar  * DePinho, R. A. & Sherr, C. J. Cellular senescence: mitotic clock or culture shock? _Cell_ 102, 407–410 (2000). Article  PubMed  Google Scholar  * Atkin, N. B. Solid


tumor cytogenetics. Progress since 1979. _Cancer Genet. Cytogenet. _ 40, 3–12 (1989 ). Article  CAS  PubMed  Google Scholar  * Artandi, S. E. _ et al_. Telomere dysfunction promotes


non-reciprocal translocations and epithelial cancers in mice. _Nature_ 406, 641–645 (2000). Article  ADS  CAS  PubMed  Google Scholar  * Greider, C. Telomerase activity, cell proliferation,


and cancer. _Proc. Natl Acad. Sci. USA_ 95, 90 (1998). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten


during ageing of human fibroblasts . _Nature_ 345, 458–460 (1990). Article  ADS  CAS  PubMed  Google Scholar  * Hastie, N. D. _ et al_. Telomere reduction in human colorectal carcinoma and


with ageing. _Nature_ 346, 866– 868 (1990). Article  ADS  CAS  PubMed  Google Scholar  * Allsopp, R. C. _ et al_. Telomere length predicts replicative capacity of human fibroblasts . _Proc.


Natl Acad. Sci. USA_ 89, 10114– 10118 (1992). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S. & Bacchetti, S. Telomerase


activity associated with acquisition of malignancy in human colorectal cancer. _Cancer Res._ 55, 2533–2536 (1995). CAS  PubMed  Google Scholar  * Kipling, D. & Cooke, H. J. Hypervariable


ultra-long telomeres in mice. _Nature_ 347, 400– 402 (1990). Article  ADS  CAS  PubMed  Google Scholar  * Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of


mouse telomerase and telomere length. _Proc. Natl Acad. Sci. USA_ 92, 4818–4822 (1995). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Broccoli, D., Godley, L. A., Donehower,


L. A., Varmus, H. E. & de, L. T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell


proliferation. _Mol. Cell. Biol._ 16, 3765–3772 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A.


Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. _Oncogene _ 16, 1723–1730 ( 1998). Article  CAS  PubMed  Google Scholar  *


Martin-Rivera, L., Herrera, E., Albar, J. & Blasco, M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. _ Proc. Natl Acad. Sci. USA_ 95, 10471– 10476


(1998). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Counter, C. M. _ et al_. Telomere shortening associated with chromosome instability is arrested in immortal cells which


express telomerase activity. _ EMBO J._ 11, 1921–1929 ( 1992). Article  CAS  PubMed  PubMed Central  Google Scholar  * McClintock, B. The stability of broken ends of chromosomes in _Zea


mays_. _ Genetics_ 26, 234–282 ( 1941). CAS  PubMed  PubMed Central  Google Scholar  * Nishizaki, T. _ et al_. Genetic alterations in primary breast cancers and their metastases: direct


comparison using modified comparative genomic hybridization. _ Genes Chromosomes Cancer_ 19, 267–272 (1997). Article  CAS  PubMed  Google Scholar  * Buerger, H. _ et al_. Comparative genomic


hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. _J. Pathol. _ 187, 396–402 ( 1999). Article  CAS  PubMed  Google Scholar  * Al-Mulla, F.,


Keith, W. N., Pickford, I. R., Going, J. J. & Birnie, G. D. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases . _Genes


Chromosomes Cancer_ 24, 306– 314 (1999). Article  CAS  PubMed  Google Scholar  * Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and


adenomatous polyp progression in multistep colorectal carcinogenesis. _Cancer Res._ 58, 4052–4054 (1998). CAS  PubMed  Google Scholar  * Lee, H. W. _ et al_. Essential role of mouse


telomerase in highly proliferative organs. _Nature_ 392, 569– 574 (1998). Article  ADS  CAS  PubMed  Google Scholar  * Rudolph, K. L. _ et al_. Longevity, stress response, and cancer in


aging telomerase-deficient mice. _Cell_ 96, 701–712 (1999). Article  CAS  PubMed  Google Scholar  * de Lange, T. Activation of telomerase in a human tumor. _Proc. Natl Acad. Sci. USA_ 91,


2882–2885 ( 1994). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Foley, K. P. & Eisenman, R. N. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the


MYC/MAX/MAD network. _ Biochim. Biophys. Acta_ 1423, M37–M47 (1999). CAS  PubMed  Google Scholar  * Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A.


Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. _Science_ 287, 1253–1258 (2000). Article  ADS  CAS  PubMed  Google Scholar  * Kitada, T., Seki, S., Kawakita,


N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. _ Biochem. Biophys. Res. Commun._ 211, 33– 39 (1995). Article  CAS  PubMed  Google Scholar  * Miura, N. _et al_.


Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. _Cancer Genet. Cytogenet._ 93, 56–62 (1997). Article  CAS  PubMed  Google Scholar  * Urabe,


Y. _et al_. Telomere length in human liver diseases. _Liver_ 16, 293–297 (1996). Article  CAS  PubMed  Google Scholar  * Weinberg, R. A. The retinoblastoma protein and cell cycle control.


_Cell_ 81, 323–330 (1995). Article  CAS  PubMed  Google Scholar  * Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. _Genes Dev._ 7, 546–554


(1993). Article  CAS  PubMed  Google Scholar  * Symonds, H. _ et al_. p53-dependent apoptosis suppresses tumor growth and progression in vivo. _Cell_ 78, 703–711 (1994). Article  CAS  PubMed


  Google Scholar  * Morgenbesser, S. D., Williams, B. O., Jacks, T. & DePinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. _Nature_ 371, 72–74


(1994). Article  ADS  CAS  PubMed  Google Scholar  * Kim, N. W. _ et al_. Specific association of human telomerase activity with immortal cells and cancer. _Science_ 266, 2011– 2015 (1994).


Article  ADS  CAS  PubMed  Google Scholar  * Blasco, M. A., Rizen, M., Greider, C. W. & Hanahan, D. Differential regulation of telomerase activity and telomerase RNA during multi-stage


tumorigenesis. _Nature Genet._ 12, 200– 204 (1996). Article  CAS  PubMed  Google Scholar  * Greenberg, R. A. _ et al_. Short dysfunctional telomeres impair tumorigenesis in the INK4a(Δ2/3)


cancer-prone mouse. _Cell_ 97, 515–525 (1999). Article  CAS  PubMed  Google Scholar  * Hahn, W. C. _ et al_. Creation of human tumour cells with defined genetic elements . _Nature_ 400,


464–468 (1999). Article  ADS  CAS  PubMed  Google Scholar  * Chin, L. & DePinho, R. A. Flipping the oncogene switch: illumination of tumor maintenance and regression. _Trends Genet. _


16, 147–150 ( 2000). Article  CAS  PubMed  Google Scholar  * Chin, L. _et al_. Essential role for oncogenic RAS in tumour maintenance. _ Nature_ 400, 468–472 ( 1999). Article  ADS  CAS 


PubMed  Google Scholar  * Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single


oncogenic lesion. _Mol. Cell_ 3 , 565–577 (1999). Article  CAS  PubMed  Google Scholar  * Gelman, R., Watson, A., Bronson, R. & Yunis, E. Murine chromosomal regions correlated with


longevity. _Genetics_ 118, 693–704 (1988). CAS  PubMed  PubMed Central  Google Scholar  * Cunha, G. & Hom, Y. Role of mesenchymal-epithelial interactions in mammary gland development.


_J. Mamm. Gland Biol. Neoplasia_ 1, 21–35 (1996). Article  CAS  Google Scholar  * Olumi, A. F. _ et al_. Carcinoma-associated fibroblasts direct tumor progression of initiated human


prostatic epithelium. _Cancer Res._ 59, 5002–5011 (1999). CAS  PubMed  Google Scholar  * Dimri, G. P. _ et al_. A biomarker that identifies senescent human cells in culture and in aging skin


in vivo. _Proc. Natl Acad. Sci. USA_ 92, 9363–9367 (1995). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W.


D. Microarray analysis of replicative senescence. _Curr. Biol._ 9, 939– 945 (1999). Article  CAS  PubMed  Google Scholar  * Campisi, J. Aging and cancer: the double-edged sword of


replicative senescence. _ J. Am. Geriatr. Soc._ 45, 482–488 (1997). Article  CAS  PubMed  Google Scholar  * Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic


ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. _ Cell_ 88, 593–602 ( 1997). Article  CAS  PubMed  Google Scholar  * Di Leonardo, A., Linke, S. P.,


Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. _Genes Dev._ 8, 2540–2551 (1994). Article 


CAS  PubMed  Google Scholar  * Coussens, L. M. _ et al_. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. _Genes Dev._ 13, 1382–1397 (1999).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Bergers, G. _ et al_. Matrix metalloprotein-9 triggers the angiogenic switch during carcinogenesis. _Nature Cell Biol._ 2, 737 –744


(2000). Article  CAS  PubMed  Google Scholar  * Coussens, L., Tinkle, C., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. _ Cell_


(in the press). * Millis, A. J., Hoyle, M., McCue, H. M. & Martini, H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human


fibroblasts. _Exp. Cell Res._ 201, 373 –379 (1992). Article  CAS  PubMed  Google Scholar  * Sternlicht, M. D. _ et al_. The stromal proteinase MMP3/stromelysin-1 promotes mammary


carcinogenesis. _Cell_ 98, 137– 146 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions.


_Carcinogenesis_ 21, 461–467 (2000). Article  CAS  PubMed  Google Scholar  * Piantanelli, L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence


and mortality. _Ann. NY Acad. Sci._ 521, 99–109 (1988). Article  ADS  CAS  PubMed  Google Scholar  * Schwartz, R. A. _ Skin Cancer: Recognition and Management_ (Springer, New York, 1988).


Download references ACKNOWLEDGEMENTS I apologize to my colleagues whose relevant work I was unable to cite owing to space and reference limitations. I thank J. Vijg, D. Hanahan, J. Campisi,


J.-P. Issa, N. Schreiber-Agus, G. Merlino, S. Mellis, L. Chin, S. Weiler and members of my laboratory for helpful discussions and critical comments. R.A.D. is supported by the National


Institutes of Health and is an American Cancer Society Research Professor and a Steven and Michele Kirsch Foundation Investigator. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments


of Adult Oncology, Medicine and Genetics Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA Ronald A. DePinho Authors * Ronald A. DePinho View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Ronald A. DePinho. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE DePinho, R. The age of cancer. _Nature_ 408, 248–254 (2000). https://doi.org/10.1038/35041694 Download citation * Issue Date: 09 November 2000 * DOI:


https://doi.org/10.1038/35041694 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative