A photorefractive organically modified silica glass with high optical gain

feature-image

Play all audios:

Loading...

ABSTRACT Photorefractive materials1 exhibit a spatial modulation of the refractive index due to redistribution of photogenerated charges in an optically nonlinear medium. As such, they have


the ability to manipulate light and are potentially important for optical applications1 including image processing, optical storage, programmable optical interconnects and simulation of


neural networks. Photorefractive materials are generally crystals, polymers and glasses with electro-optic or birefringent properties and non-centrosymmetric structure2. Here we report the


photorefractive effect in both non-centrosymmetric and centrosymmetric azo-dye-doped silica glasses, in which refractive index gratings that are spatially phase-shifted with respect to the


incident light intensity pattern are observed. The effect results from a non-local response of the material to optical illumination, and enables the transfer of energy between two


interfering light beams (asymmetric two-beam coupling). Although the writing time for the present grating is relatively slow, we have achieved a two-beam coupling optical gain of 188 cm-1 in


the centrosymmetric glasses, and a gain of 444 cm-1 in the non-centrosymmetric structures. The latter are fabricated using a corona discharge process3 to induce a permanent arrangement of


azo-dye chromophores. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EFFICIENT ULTRAFAST LASER WRITING WITH ELLIPTICAL POLARIZATION Article Open access 15 March 2023 TAILORING CHIRAL OPTICAL


PROPERTIES BY FEMTOSECOND LASER DIRECT WRITING IN SILICA Article Open access 20 February 2023 PERIODIC LIQUID CRYSTALLINE WAVEGUIDING MICROSTRUCTURES Article Open access 25 August 2023


REFERENCES * Petrov, M. P., Stepanov, S. I. & Khomenko, A. V. _Photorefractive Crystals in Coherent Optical Systems _ (Springer, Berlin, 1991). Book  Google Scholar  * Nolte, D. D. (ed.)


_ Photorefractive Effects and Materials_ (Kluwer, Dordrecht, 1995). Book  Google Scholar  * Southgate, P. D. Room-temperature poling and morphology changes in pyroelectric polyvinylidene


fluoride. _Appl. Phys. Lett._ 28, 250– 252 (1976). Article  ADS  CAS  Google Scholar  * Brinker, C. J. & Scherer, G. W. _Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing_


(Academic, San Diego, 1990). Google Scholar  * Ebelmen, J. J. Sur les éthers siliciques. _C.R. Acad. Sci._ 19 , 398–400 (1844). Google Scholar  * Meerholz, K., Volodin, B. L., Sandalphon,


Kippelen, B. & Pyghambarian, N. A photorefractive polymer with high optical gain and diffraction efficiency near 100%. _Nature_ 371, 497–500 (1994). Article  ADS  CAS  Google Scholar  *


Chaput, F., Riehl, D., Lévy, Y. & Boilot, J.-P. New nonlinear sol-gel films exhibiting photorefractivity. _Chem. Mater._ 5, 589–590 ( 1993). Article  CAS  Google Scholar  * Mardner, S.


R., Kippelen, B., Jen, A. K.-Y. & Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. _Nature_ 388, 845– 851 (1997).


Article  ADS  Google Scholar  * Eichler, H. J., Günter, P. & Pohl, D. W. _Laser-Induced Dynamic Gratings_ (Springer, Berlin, 1986). Book  Google Scholar  * Kogelnik, H. Coupled wave


theory for thick hologram gratings. _Bell Syst. Tech. J._ 48, 2909–2947 ( 1969). Article  Google Scholar  * Ducharme, S., Scott, J. C., Twieg, R. J. & Moerner, W. E. Observation of the


photorefractive effect in a polymer. _Phys. Rev. Lett._ 66, 1846–1849 ( 1991). Article  ADS  CAS  Google Scholar  * Darracq, B. _ et al_. Stable photorefractive memory effect in sol-gel


materials. _Appl. Phys. Lett._ 70, 292– 294 (1997). Article  ADS  CAS  Google Scholar  * Moerner, W. E., Grunnet-Jepsen, A. & Thompson, C. L. Photorefractive polymers. _Annu. Rev. Mater.


Sci._ 27, 586–623 ( 1997). Article  ADS  Google Scholar  * Boyd, R. W. _ Nonlinear Optics_ 413 (Academic, London, 1992). Google Scholar  * Moerner, W. E., Silence, S. M., Hache, F. &


Bjorklund, G. C. Orientationally enhanced photorefractive effect in polymers. _J. Opt. Soc. Am. B_ 11, 320–330 (1994). Article  ADS  CAS  Google Scholar  * Mitchell, G. R., O'Leary, S.


V. & Smith, M. A. Multiple grating formation in photorefractive polymers. _Polym. Preprints_ 38, 510– 511 (1997). CAS  Google Scholar  * Sandalphon et al. Dual-grating formation through


photorefractivity and photoisomerization in azo-dye-doped polymers. _Opt. Lett._ 19, 68 –70 (1994). Article  ADS  CAS  Google Scholar  * Kippelen, B., Meerholz, K. & Peyghambarian, N. in


_Nonlinear Optics of Organic Molecules and Polymers _ (eds Nalwa, H. S. & Miyata, S.) 465–484 (CRC Press, Boca Raton, 1997). Google Scholar  * Todorov, T., Nikolova, L. & Tomova, N.


Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. _Appl. Opt. _ 23, 4309–4312 ( 1984). Article  ADS  CAS  Google Scholar  *


Gibbons, W. M., Shannon, P. J., Sun, S.-T. & Swetlin, B. J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. _Nature_ 351, 49–50 (1991). Article  ADS 


CAS  Google Scholar  * Sekkat, Z. & Dumont, M. Polarization effects in photoisomerization of azo dyes in polymeric films. _Appl. Phys. B_ 53, 121–123 (1991). Article  ADS  Google Scholar


  * Sekkat, Z. & Dumont, M. Photoassisted poling of azo dye doped polymeric films at room temperature. _Appl. Phys. B_ 54, 486–489 (1992). Article  ADS  Google Scholar  * Enomoto, T. _


et al_. Electrostatically induced isomerization of azobenzene derivatives in Langmuir-Blodgett films. _J. Phys. Chem. B_ 101, 7422–7427 (1997). Article  CAS  Google Scholar  Download


references ACKNOWLEDGEMENTS We thank N. Kukhtarev, S. Janz, J. Roovers and I. Lévesque for stimulating discussions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institute for National


Measurement Standards, National Research Council, Ottawa , K1A 0R6, Canada Pavel Cheben & Chander P. Grover * Department of Materials Science and Engineering, University of California,


Los Angeles, 90095, California, USA Francisco del Monte & John D. Mackenzie * Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ,


Madrid, 28049, Spain Francisco del Monte * Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, K1A 0R6, Canada Dennis J. Worsfold & Dave J.


Carlsson Authors * Pavel Cheben View author publications You can also search for this author inPubMed Google Scholar * Francisco del Monte View author publications You can also search for


this author inPubMed Google Scholar * Dennis J. Worsfold View author publications You can also search for this author inPubMed Google Scholar * Dave J. Carlsson View author publications You


can also search for this author inPubMed Google Scholar * Chander P. Grover View author publications You can also search for this author inPubMed Google Scholar * John D. Mackenzie View


author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Pavel Cheben. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Cheben, P., del Monte, F., Worsfold, D. _et al._ A photorefractive organically modified silica glass with high optical gain. _Nature_ 408, 64–67 (2000).


https://doi.org/10.1038/35040513 Download citation * Received: 05 June 2000 * Accepted: 30 August 2000 * Issue Date: 02 November 2000 * DOI: https://doi.org/10.1038/35040513 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative