
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
Enriching grain Zn concentration in rice through Zn fertilization is one approach to Zn biofortification efforts. Experiments to understand the effectiveness of foliar Zn application at
different growth stages in enriching grain Zn of biofortification breeding lines were conducted during the dry season at an experiment station and in a farmer's field with moderately and
severely Zn-deficient soils, respectively. Foliar Zn applications at 4 kg Zn ha−1 as zinc sulfate were given at different growth stages: active tillering, heading, and both active tillering
+ heading. Foliar Zn application at active tillering had no effect on brown rice Zn concentration, but, at heading, there was a range in genotype response from 1 to 10 mg kg−1 increase, with
an average increase of 4 mg kg−1 at the moderately Zn-deficient site and 7 mg kg−1 at the severely Zn-deficient site. At the moderately Zn-deficient site, two biofortification breeding
lines (IR83668, IR91152AC) reached the target of 30 mg kg−1 Zn in brown rice without Zn fertilization at heading stage, while two other genotypes (IR68144, IR91143AC) reached the target with
heading-stage foliar Zn application. At the severely Zn-deficient site, only one of the tested genotypes (IR68144) reached the target Zn concentration even after foliar Zn application at
both active tillering and heading stage and the same genotype recorded the greatest response to foliar Zn (10 mg kg−1 increase). Greater total leaf area at spraying time increased the
effectiveness of foliar Zn application at the severely Zn-deficient site only. Foliar Zn application at the two tested growth stages failed to overcome agronomic Zn deficiency. Three of the
biofortification breeding lines (IR68144, IR85800, and IR83668) had high grain Zn content that was independent of grain yield. In a separate experiment to test a wider range of spraying
times at the severely deficient site with IR64, the spraying at the early milk stage emerged as the most effective stage for increasing brown rice Zn concentration. Our results show that
agronomic Zn biofortification through foliar Zn application is likely to be much more effective at increasing grain Zn concentration of genotypes with strong Zn-remobilization capacity than
those with weak remobilization capacity.
Mabesa, R.L.; Impa, S.M.; Grewal, D.; Johnson-Beebout, S.E. Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops
Research (2013) 149: 223-233. [DOI: 10.1016/j.fcr.2013.05.012]
Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application