
- Select a language for the TTS:
- Spanish Female
- Spanish Male
- Spanish Latin American Female
- Spanish Latin American Male
- Language selected: (auto detect) - ES
Play all audios:
El glaucoma, la primera causa de ceguera en el mundo, es también denominada “la enfermedad silenciosa”. Cuando el paciente siente que está perdiendo vista, el 50 % de las neuronas que envían
el mensaje desde el ojo al cerebro –las llamadas células ganglionares de la retina– ya han muerto. Nos enfrentamos, pues, a una enfermedad neurodegenerativa. La razón por la que las
personas afectadas no acuden antes al oftalmólogo es que la muerte de las células ganglionares comienza en la periferia de la retina, una zona que apenas utilizamos. Para averiguar por qué
actúa así esta sibilina dolencia, nuestro grupo de investigación se propuso analizar las diferencias entre la retina periférica y central, la última zona donde se pierde la visión. LA RETINA
Y SUS GUARDIANES Existen distintos tipos de glaucoma, pero el más común –denominado glaucoma de ángulo abierto– se produce por el aumento de la presión intraocular, que afecta a la retina.
En realidad, la retina es una prolongación del cerebro donde, además de neuronas, hay otros tipos de células: las células gliales. Podemos distinguir tres modalidades: * Las células de la
microglía. Forman el sistema inmunológico de la retina. * Los astrocitos. Participan en la alimentación de las neuronas, como puentes entre los vasos sanguíneos y las neuronas, además de
ayudar en la comunicación entre las neuronas. * Las células de la glía de Müller son las más abundantes de la retina. Forman pilares desde la parte más basal de la retina, que limita con el
vítreo, hasta el extremo donde se encuentran los fotorreceptores. Las células de Müller desempeñan múltiples funciones. Entre ellas, destaca el mantenimiento del equilibrio de la retina –la
homeostasis–, que llevan a cabo fagocitando productos nocivos y alimentando a las neuronas. Esto último pueden hacerlo porque, al igual que los astrocitos, se encuentran en contacto con los
vasos sanguíneos. Otra de sus tareas primordiales consiste en proteger a las neuronas mediante la secreción de sustancias que las mantienen a salvo de situaciones de estrés. Además, tienen
sensores de presión que, a modo de muelles, sienten los cambios de presión hidrostática del ojo. MUELLES MÁS DELICADOS En nuestro laboratorio investigamos desde hace más de 20 años las
células de la glía de Müller: somos expertas tanto en su cultivo como en el conocimiento de las sustancias que secretan. Así, demostramos recientemente que las funciones de las células de
Müller se modifican por los niveles de presión a los que está sometida la retina. En cultivos celulares, comparamos las sustancias que liberan las células situadas en el centro y la
periferia de la retina y caracterizamos sus sensores de presión, en estado normal y sometiéndolas a presión hidrostática. Los resultados del estudio, que acabamos de publicar en la revista
_Cell and Bioscience_, revelan que las células de Müller periféricas sometidas a presión secretan una mayor cantidad de proteínas asociadas con procesos dañinos, como la apoptosis (muerte
celular programada), el estrés oxidativo y la inflamación, que las células del centro de la retina. En definitiva, sus “muelles”, más delgados y sensibles, se deforman antes en la las
células periféricas que los de células centrales, mas resistentes. El problema es que, como reacción a la presión, las células de la glía de Müller situadas en la periferia liberan
sustancias que afectan gravemente a las neuronas próximas, causándoles la muerte. Esto explicaría, por primera vez, la razón por la que la pérdida de visión en el glaucoma comienza a
extenderse precisamente desde la zona periférica del ojo. Nuestro objetivo futuro es modificar los sensores de presión de la glía de Müller para que dejen de secretar sustancias nocivas. Así
seremos capaces de “neuroproteger” la retina y frenar la progresión de la enfermedad.