
Play all audios:
ABSTRACT The Earth can be viewed as a massive heat engine, with various energy sources and sinks. Insights into its evolution can be obtained by quantifying the various energy contributions
in the context of the overall energy budget. Over the past decade, estimates of the heat flow across the core–mantle boundary, or across a chemical boundary layer above it, have generally
increased by a factor of 2 to 3. The current total heat flow at the Earth's surface — 46 ± 3 terawatts (1012 J s−1) — involves contributions from heat entering the mantle from the core,
as well as mantle cooling, radiogenic heating of the mantle from the decay of radioactive elements, and various minor processes such as tidal deformation, chemical segregation and thermal
contraction gravitational heating. The increased estimates of deep-mantle heat flow indicate a more prominent role for thermal plumes in mantle dynamics, more extensive partial melting of
the lowermost mantle in the past, and a more rapidly growing and younger inner core and/or presence of significant radiogenic material in the outer core or lowermost mantle as compared with
previous estimates. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution
Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full
article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *
Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LONGITUDINAL STRUCTURE OF EARTH’S MAGNETIC FIELD CONTROLLED BY LOWER MANTLE HEAT FLOW Article 16 March 2023 WEAK MAGNETIC
FIELD CHANGES OVER THE PACIFIC DUE TO HIGH CONDUCTANCE IN LOWERMOST MANTLE Article 29 June 2020 SUSTAINING EARTH’S MAGNETIC DYNAMO Article 10 March 2022 REFERENCES * Pollack, H. N., Hurter,
S. J. & Johnson, J. R. Heat flow from the Earth's interior: analysis of the global data set. _Rev. Geophys._ 31, 267–280 (1993). Google Scholar * Jaupart, C., Labrosse, S. &
Mareschal, J.-C. Temperatures, heat and energy in the mantle of the Earth. _Treatise on Geophys._ (in the press). * Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional
stratification in the deep mantle. _Science_ 283, 1881–1884 (1999). Google Scholar * Nolet, G., Karato, S.-I. & Montelli, R. Plume fluxes from seismic tomography. _Earth Planet. Sci.
Lett._ 248, 685–699 (2006). Google Scholar * Stacey, F. D. & Loper, D. E. The thermal boundary layer interpretation of D″ and its role as a plume source. _Phys. Earth Planet Inter._ 33,
45–55 (1983). Google Scholar * Davies, G. F. Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots. _J. Geophys. Res._ 93, 10467–10480 (1988). Google Scholar * Sleep,
N. H. Hotspots and mantle plumes: some phenomenology. _J. Geophys. Res._ 95, 6715–6736 (1990). Google Scholar * Williams, Q. in _The Core-Mantle Boundary Region_ (eds Gurnis, M., Wysession,
M. E., Knittle, E. & Buffett, B. A.) 73–81 (AGU, Washington DC, 1998). Google Scholar * Holland, K. G. & Ahrens, T. J. Melting of (Mg,Fe)2SiO4 at the core-mantle boundary of the
Earth. _Science_ 275, 1623–1625 (1997). Google Scholar * Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. _Rev. Geophys._ 38, 221–245 (2000).
Google Scholar * Akins, J. A., Luo, S.-N., Asimow, P. D. & Ahrens, T. J. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle.
_Geophys. Res. Lett._ 31, L14612 (2004). Google Scholar * Ahrens, T. J., Holland, K. G. & Chen G. Q. Phase diagram of iron, revised-core temperatures. _Geophys. Res. Lett._ 29, 1150
(2002). Google Scholar * Anderson, O. L. The power balance at the core-mantle boundary. _Phys. Earth Planet. Inter._ 131, 1–17 (2002). Google Scholar * Stacey, F. D. _Physics of the
Earth_. 3rd edn (Brookfield Press, Brisbane, Australia, 1992). Google Scholar * Buffett, B. A. The thermal state of Earth's core. _Science_ 299, 1675–1676 (2003). Google Scholar *
Alfe, D. Gillan, M. J. & Price, G. D. Thermodynamics from first principles: temperature and composition of the Earth's core. _Min. Mag._ 67, 113–123 (2003). Google Scholar * Nimmo,
F. Core Dynamics: Energetics of the core, in _Treatise on Geophys_. (in the press). * Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes.
_Science_ 283, 1699–1706 (1999). Google Scholar * Stacey, F. D. & Loper, D. E. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy
balance. _Phys. Earth Planet. Inter._ 161, 13–18 (2007). Google Scholar * Goncharov, A. F., Struzhkin, V. V. & Jacobsen, S. D. Reduced radiative conductivity of low-spin (Mg,Fe)O in
the lower mantle. _Science_ 312, 1205–1208 (2006). Google Scholar * Lay, T., Williams, Q. & Garnero, E. J. The core-mantle boundary layer and deep Earth dynamics. _Nature_ 392, 461–468
(1998). Google Scholar * Wang, Y. & Wen, L. Geometry and P and S velocity structure of the “African Anomaly”. _J. Geophys. Res._ 112, B05313 (2007). Google Scholar * Simmons, N. A.,
Forte, A. M. & Grand, S. P. Thermochemical structure and dynamics of the African superplume. _Geophys. Res. Lett._ 34, L02301 (2007). Google Scholar * Farnetani, C. G. Excess
temperature of mantle plumes: the role of chemical stratification across D″. _Geophys. Res. Lett._ 24, 1583–1586 (1997). Google Scholar * Tackley, P. J. Mantle convection and plate
tectonics: toward an integrated physical and chemical theory. _Science_ 288, 2002–2007 (2000). Google Scholar * Montague, N. L. & Kellogg, L. H. Numerical models of a dense layer at the
base of the mantle and implications for the geodynamics of D″. _J. Geophys. Res._ 105, 11101–11114 (2000). Google Scholar * Zhong, S. & Hager, B. H. Entrainment of a dense layer by
thermal plumes. _Geophys. J. Int._ 154, 666–676 (2003). Google Scholar * McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. _Nature_ 437,
1136–1139 (2005). Google Scholar * Namiki, A. & Kurita, K. Heat transfer and interfacial temperature of two-layered convection: Implications for the D″-mantle coupling. _Geophys. Res.
Lett._ 30, 1023 (2003). Google Scholar * Stacey, F. D. & Anderson, O. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. _Phys. Earth Planet. Inter._ 124,
153–162 (2001). Google Scholar * Buffett, B. A. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. _Geophys. Res. Lett._ 29, 1555 (2002). Google
Scholar * Christensen, U. & Tilgner, A. Power requirements of the geodynamo from Ohmic losses in numerical and laboratory dynamos. _Nature_ 429, 169–171 (2004). Google Scholar *
Glatzmaier, G. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. _Nature_ 377, 203–209 (1995). Google Scholar * Gubbins, D.,
Alfe, D., Masters, G., Price, D. & Gillan, M. Gross thermodynamics of 2-component core convection. _Geophys. J. Int._ 157, 1407–1414 (2004). Google Scholar * Nakagawa, T. & Tackley,
P. J. Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection. _Geochem. Geophys. Geosyst._ 6, Q08003 (2005). Google
Scholar * Korenaga, J. Firm mantle plumes and the nature of the core-mantle boundary region. _Earth Planet. Sci. Lett._ 232, 29–37 (2005). Google Scholar * Davies, G. F. Mantle regulation
of core cooling: A geodynamo without core radioactivity? _Phys. Earth Planet. Inter._ 160, 215–229 (2007). Google Scholar * Nimmo, F., Price, G. D., Brodholt, J. & Gubbins, D. The
influence of potassium on core and geodynamo evolution. _Geophys. J. Int._ 156, 363–376 (2004). Google Scholar * Lister, J. R. & Buffett, B. A. Stratification of the outer core at the
core-mantle boundary. _Phys. Earth Planet. Int._ 105, 5–19 (1998). Google Scholar * Helffrich, G. & Kaneshima, S. Seismological constraints on core composition from Fe-O-S liquid
immiscibility. _Science_ 306, 2239–2242 (2004). Google Scholar * Eaton, D. W. & Kendall, J.-M. Improving seismic resolution of outermost core structure by multichannel analysis and
deconvolution of broadband SmKS phases. _Phys. Earth Planet. Inter._ 155, 104–119 (2006). Google Scholar * Tanaka, S. Seismic detectability of anomalous structure at the top of the
Earth's outer core with broadband array analysis of SmKS phases. _Phys. Earth Planet. Int._ 141, 141–152 (2004). Google Scholar * Gubbins, D. Geomagnetic constraints on stratification
at the top of Earth's core. _Earth Planets Space_ 59, 661–664 (2007). Google Scholar * Davies, G. F. Cooling the core and mantle by plume and plate flows. _Geophys. J. Int._ 115,
132–146 (1993). Google Scholar * Mittelstaedt, E. & Tackley, P. Plume heat flow is much lower than cmb heat flow. _Earth Planet. Sci. Lett._ 241, 202–210 (2006). Google Scholar *
Labrosse, S. Hotspots, mantle plumes and core heat loss. _Earth Planet. Sci. Lett._ 199, 147–156 (2002). Google Scholar * Behn, M., Conrad, C. & Silver, P. Detection of upper mantle
flow associated with the African superplume. _Earth Planet. Sci. Lett._ 224, 259–274 (2004). Google Scholar * Zhong, S. Constraints on thermochemical convection of the mantle from plume
heat flux, plume excess temperature, and upper mantle temperature. _J. Geophys. Res._ 111, B04409 (2006). Google Scholar * Jellinek, A. M. & Manga, M. The influence of a chemical
boundary layer on the fixity, spacing and lifetime of mantle plumes. _Nature_ 418, 760763 (2002). Google Scholar * Nakagawa, T. & Tackley, P. J. Effects of thermo-chemical mantle
convection on the thermal evolution of the Earth's core. _Earth Planet Sci. Lett._ 220, 107–119 (2004). Google Scholar * Tan, E. & Gurnis, M. Compressible thermochemical convection
and application to lower mantle structures. _J. Geophys. Res._ 112, B06304 (2007). Google Scholar * Nataf, H.-C. Seismic imaging of mantle plumes. _Annu. Rev. Earth Planet. Sci._ 28,
319–417 (2000). Google Scholar * Goes, S. Cammarano, F. & Hansen, U. Synthetic seismic signature of thermal plumes. _Earth Planet. Sci. Lett._ 218, 403–419 (2004). Google Scholar *
Zhao, D. Seismic structure of hotspots and mantle plumes. _Earth and Planet. Sci. Lett._ 192, 251–265 (2001). Google Scholar * Montelli, R., Nolet, G., Dahlen, F. A., Masters, G. Engdahl,
E. R. & Hung, S.-H. Finite-frequency tomography reveals a variety of plumes in the mantle. _Science_ 303, 338–343 (2004). Google Scholar * Thorne, M. S., Garnero, E. J. & Grand, S.
P. Geographic correlation between hotspots and deep mantle lateral shear-wave velocity gradients. _Phys. Earth Planet. Inter._ 146, 47–63 (2004). Google Scholar * Romanowicz, B. & Gung,
Y. C. Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. _Science_ 296, 513–516 (2002). Google Scholar * Murakami, M., Hirose, K., Kawamura, K. Sato,
N & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . _Science_ 304, 855–858 (2004). Google Scholar * Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a
post-perovskite phase of MgSiO3 in Earth's D″ layer. _Nature_ 430, 445–448 (2004). Google Scholar * Hirose, K. Postperovskite phase transition and its geophysical implications. _Rev.
Geophys._ 44, RG3001 (2006). Google Scholar * Stackhouse, S., Brodholt, J. P., Wookey, J., Kendall, J.-M. & Price, G. D. The effect of temperature on the seismic anisotropy of the
perovskite and post-perovskite polymorphs of MgSiO3 . _Earth Planet. Sci. Lett._ 230, 1–10 (2005). Google Scholar * Wentzcovitch, R. M., Tsuchiya, T. & Tsuchiya, J. MgSiO3
postperovskite at D″ conditions. _Proc. Nat. Acad. Sci. USA_ 103, 543–546 (2006). Google Scholar * Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. & Price, G. D. Efficacy of
post-perovskite as an explanation for lowermost mantle seismic properties. _Nature_ 438, 1004–1007 (2005). Google Scholar * Wysession, M. E. et al. in _The Core-Mantle Boundary Region_.
(eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 273–297 (AGU, Washington DC, 1998). Google Scholar * Lay, T. & Garnero, E. J. in _Post-perovskite: The Last Phase
Change_. (eds Hirose, K., Brodholt, J., Lay, T. & Yuen D.) (AGU, in the press). * Sidorin, I., Gurnis, M. & Helmberger, D. V. Evidence for a ubiquitous seismic discontinuity at the
base of the mantle. _Science_ 286, 1326–1331 (1999). Google Scholar * Spera, F. J., Yuen, D. A. & Giles, G. Tradeoffs in chemical and thermal variations in the post-perovskite phase
transition: Mixed phase regions in the deep lower mantle? _Phys. Earth Planet. Inter._ 159, 234–246 (2006). Google Scholar * Hirose, K. Sinmyo, R., Sata, N. & Ohishi, Y. Determination
of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. _Geophys. Res. Lett._ 33, L01310 (2006). Google Scholar * Helmberger, D. V., Lay, T., Ni, S.
& Gurnis, M. Deep mantle structure and the post-perovskite phase transition. _Proc. Natl Acad. Sci. USA_ 102, 17257–17263 (2005). Google Scholar * Chambers, K. & Woodhouse, J. H.
Transient D″ discontinuity revealed by seismic migration. _Geophys. Res. Lett._ 33, L17312 (2006). Google Scholar * Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A
post-perovskite lens and D″ heat flux beneath the central Pacific. _Science_ 314, 1272–1276 (2006). Google Scholar * Sun, D., Song, T.-R. A. & Helmberger, D. Complexity of D″ in the
presence of slab-debris and phase changes. _Geophys. Res. Lett._ 33, L12S07 (2006). Google Scholar * Sun, D. Tan, E., Helmberger, D. & Gurnis, M. Seismological support for the
metastable superplume model, sharp features, and phase changes within the lower mantle, _Proc. Natl Acad. Sci. USA_ 104, 9151–9155 (2007). Google Scholar * van der Hilst, R. D., de Hoop, M.
V., Wang, P., Shim, S.-H., Ma, P. & Tenorio, L. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region. _Science_ 315, 1813–1817 (2007). Google Scholar *
Braginski, S. I. & Roberts, P. H. Equations governing convection in Earth's core and the geodynamo. _Geophys. Astrophys. Fluid Dyn._ 79, 1–97 (1995). Google Scholar * Hernlund, J.
W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. _Nature_ 434, 882–886 (2005). Google Scholar * Kaus,
B. J. P., Connolly, J. A. D., Podladchikov, Y. Y. & Schmalholz, S. M. The effect of mineral phase transitions on sedimentary basic subsidence and uplift. _Earth Planet. Sci. Lett._ 233,
213–228 (2005). Google Scholar * Thomas, C., Garnero, E. J. & Lay, T. High-resolution imaging of lowermost mantle structure under the Cocos plate. _J. Geophys. Res._ 109, B08307
(2004). * Thomas, C., Kendall, J.-M. & Lowman, J. Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. _Earth Planet. Sci. Lett._ 225, 105–113 (2004).
Google Scholar * Flores, C. & Lay, T. The trouble with seeing double. _Geophys. Res. Lett._ 32, L24305 (2005). Google Scholar * Avants, M. Lay, T., Russell, S. A. & Garnero, E. J.
Shear velocity variation within the D″ region beneath the central Pacific. _J. Geophys. Res._ 111, B05305 (2006). Google Scholar * Buffett, B. A. Bounds on heat flow beneath a double
crossing of the perovskite-postperovskite phase transition. _Geophys. Res. Lett._ (submitted). * Hernlund, J. W. & Labrosse, S. Geophysically consistent values of the perovskite to
post-perovskite transition Clapeyron slope. _Geophys. Res. Lett._ 34, L05309 (2007). Google Scholar * Garnero, E. J., Revenaugh, J., Williams, Q., Lay, T. & Kellogg, L. H. in _The
Core-Mantle Boundary Region_ (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 319–334 (AGU, Washington DC, 1998). Google Scholar * Williams, Q. & Garnero E. J.
Seismic evidence for partial melt at the base of the Earth's mantle. _Science_ 273, 1528–1530 (1996). Google Scholar * Knittle, E. & Jeanloz, R. The Earth's core–mantle
boundary: results of experiments at high pressures and temperatures. _Science_ 251, 1438–1443 (1991). Google Scholar * Kanda, R. V. S. & Stevenson, D. J. Suction mechanism for iron
entrainment into the lower mantle. _Geophys. Res. Lett._ 33, L02310 (2006). Google Scholar * Dobson, D. P. & Brodholt, J. P. Subducted banded iron formations as a source of
ultralow-velocity zones at the core-mantle boundary. _Nature_ 434, 371–373 (2005). Google Scholar * Buffett, B. A., Garnero, E. J. & Jeanloz, R. Sediments at the top of Earth's
core. _Science_ 290, 1338–1342 (2000). Google Scholar * Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. _Science_ 312, 564–565 (2006). Google Scholar
* Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallising dense magma ocean at the base of the Earth's mantle. _Nature_ (in the press). * Thorne, M. S. & Garnero, E. J.
Inferences on ultra-low velocity zone structure from a global analysis of SPdKS waves. _J. Geophys. Res._ 109, B08301 (2004). Google Scholar * Rost, S., Garnero, E. J., Williams, Q. &
Manga, M. Seismic constraints on a possible plume root at the core-mantle boundary. _Nature_ 435, 666–669 (2005). Google Scholar * Hernlund, J. & Tackley, Some dynamical consequences of
partial melting in Earth's deep mantle. _Phys. Earth Planet. Inter._ (in the press). * Stixrude, L. & Karki, B. Structure and freezing of MgSi03 liquid in Earth's lower
mantle. _Science_ 310, 297–299 (2005). Google Scholar * Boyet, M. & Carlson, R. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. _Science_ 309,
576–581 (2005). Google Scholar * Labrosse, S., Poirier, J.-P. & Le Mouel, J.-L. The age of the inner core. _Earth Planet. Sci. Lett._ 190, 111–123 (2001). Google Scholar * Conrad, C.
P. & Hager, B. H. Thermal evolution of an Earth with strong subduction zones. _Geophys. Res. Lett._ 26, 3041–3044 (1999). Google Scholar * Korenaga, J., Energetics of mantle convection
and the fate of fossil heat. _Geophys. Res. Lett._ 30, 1437 (2003). Google Scholar * Labrosse, S. & Jaupart, C. The thermal evolution of the Earth: Long term and fluctuations. _Earth
Planet. Sci. Lett._ (in the press). Download references ACKNOWLEDGEMENTS We thank F. Nimmo and S. Labrosse for preprints, and F. Nimmo, Richard Holme and Bill McDonough for their comments on
the manuscript. T.L.'s research on the deep Earth is supported by the NSF. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Earth and Planetary Sciences Department, University of
California, Santa Cruz, 91125, California, USA Thorne Lay * Earth and Ocean Sciences, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada John Hernlund * Department
of Geophysical Sciences, University of Chicago, Chicago, 60637, Illinois, USA Bruce A. Buffett Authors * Thorne Lay View author publications You can also search for this author inPubMed
Google Scholar * John Hernlund View author publications You can also search for this author inPubMed Google Scholar * Bruce A. Buffett View author publications You can also search for this
author inPubMed Google Scholar CONTRIBUTIONS T.L., J.H. and B.A.B. contributed equally to the writing, data analysis and ideas in this paper. CORRESPONDING AUTHOR Correspondence to Thorne
Lay. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lay, T., Hernlund, J. & Buffett, B. Core–mantle boundary heat flow. _Nature Geosci_ 1, 25–32
(2008). https://doi.org/10.1038/ngeo.2007.44 Download citation * Issue Date: January 2008 * DOI: https://doi.org/10.1038/ngeo.2007.44 SHARE THIS ARTICLE Anyone you share the following link
with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative